Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (15): 528728-528728.doi: 10.7527/S1000-6893.2023.28728
• Fluid Mechanics and Vehicle Conceptual Design • Previous Articles Next Articles
Shengye WANG1, Xiaogang DENG1,2(), Yidao DONG1, Dongfang WANG1, Jiahong CAI1
Received:
2023-03-21
Revised:
2023-04-13
Accepted:
2023-04-23
Online:
2023-08-15
Published:
2023-04-28
Contact:
Xiaogang DENG
E-mail:xgdeng2000@vip.sina.com
Supported by:
CLC Number:
Shengye WANG, Xiaogang DENG, Yidao DONG, Dongfang WANG, Jiahong CAI. High-order numerical methods for engineering turbulence simulation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528728-528728.
1 | SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences[R]. Washington, D. C.: NASA, 2014. |
2 | 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3): 020891. |
ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field: Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 020891 (in Chinese). | |
3 | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
4 | SPALART P R, RUMSEY C L. Effective inflow conditions for turbulence models in aerodynamic calculations[J]. AIAA Journal, 2007, 45(10): 2544-2553. |
5 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
6 | MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003, 4(1): 625-632. |
7 | EISFELD B, BRODERSEN O. Advanced turbulence modelling and stress analysis for the DLR-F6 configuration[C]∥Proceedings of the 23rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2005. |
8 | RUMSEY C L. Application of Reynolds stress models to separated aerodynamic flows[M]∥ Differential Reynolds Stress Modeling for Separating Flows in Industrial Aerodynamics. Berlin: Springer International Publishing, 2015: 19-37. |
9 | LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906. |
10 | WANG L, FU S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1): 165-187. |
11 | SÁNCHEZ-ROCHA M, MENON S. The compressible hybrid RANS/LES formulation using an additive operator[J]. Journal of Computational Physics, 2009, 228(6): 2037-2062. |
12 | DEARDORFF J W. Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer[J]. Boundary-Layer Meteorology, 1974, 7(1): 81-106. |
13 | DEARDORFF J W. The use of subgrid transport equations in a three-dimensional model of atmospheric turbulence[J]. Journal of Fluids Engineering, 1973, 95(3): 429-438. |
14 | STRELETS M. Detached eddy simulation of massively separated flows[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
15 | PROBST A, RADESPIEL R, KNOPP T. Detached-eddy simulation of aerodynamic flows using a reynolds-stress background model and algebraic RANS/LES sensors[C]∥Proceedings of the 20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011. |
16 | 王圣业, 王光学, 董义道, 等. 基于雷诺应力模型的高精度分离涡模拟方法[J]. 物理学报, 2017, 66(18): 184701. |
WANG S Y, WANG G X, DONG Y D, et al. High-order detached-eddy simulation method based on a Reynolds-stress background model[J]. Acta Physica Sinica, 2017, 66(18): 184701 (in Chinese). | |
17 | WANG Z J, FIDKOWSKI K, ABGRALL R, et al. High-order CFD methods: Current status and perspective[J]. International Journal for Numerical Methods in Fluids, 2013, 72(8): 811-845. |
18 | BASSI F, GHIDONI A, PERBELLINI A, et al. A high-order Discontinuous Galerkin solver for the incompressible RANS and k⁃ω turbulence model equations[J]. Computers & Fluids, 2014, 98: 54-68. |
19 | ZHOU C, WANG Z J. CPR high-order discretization of the RANS equations with the SA model[C]∥Proceedings of the 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
20 | SCHOENAWA S, HARTMANN R. Discontinuous Galerkin discretization of the Reynolds-averaged Navier-Stokes equations with the shear-stress transport model[J]. Journal of Computational Physics, 2014, 262: 194-216. |
21 | BASSI F, CRIVELLINI A, REBAY S, et al. Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k⁃ω turbulence model equations[J]. Computers & Fluids, 2005, 34(4-5): 507-540. |
22 | CRIVELLINI A, D’ALESSANDRO V, BASSI F. A Spalart-Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows[J]. Journal of Computational Physics, 2013, 241: 388-415. |
23 | LORINI M, BASSI F, COLOMBO A, et al. Discontinuous Galerkin solution of the RANS and kL-k⁃log(ω) equations for natural and bypass transition[J]. Compu-ters & Fluids, 2021, 214: 104767. |
24 | HARTMANN R, HELD J, LEICHT T. Adjoint-based error estimation and adaptive mesh refinement for the RANS and k⁃ω turbulence model equations[J]. Journal of Computational Physics, 2011, 230(11): 4268-4284. |
25 | YANG Y C, ZHA G C. Simulation of airfoil stall flows using IDDES with high order schemes[C]∥Proceedings of the 46th AIAA Fluid Dynamics Conference. Reston: AIAA, 2016. |
26 | GAN J Y, SHEN Y Q, ZHA G C. Comparison of drag prediction using RANS models and DDES for the DLR-F6 configuration using high order schemes[C]∥Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
27 | ANTONIADIS A F, TSOUTSANIS P, DRIKAKIS D. Assessment of high-order finite volume methods on unstructured meshes for RANS solutions of aeronautical configurations[J]. Computers & Fluids, 2017, 146: 86-104. |
28 | WANG Y T, ZHANG Y L, LI S, et al. Calibration of a γ-Reθ transition model and its validation in low-speed flows with high-order numerical method[J]. Chinese Journal of Aeronautics, 2015, 28(3): 704-711. |
29 | 王运涛, 孙岩, 王光学, 等. 湍流模型离散精度对数值模拟影响的计算分析[J]. 航空学报, 2015, 36(5): 1453-1459. |
WANG Y T, SUN Y, WANG G X, et al. Numerical analysis of the effect of discrete accuracy of turbulence model on numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1453-1459 (in Chinese). | |
30 | 王运涛, 孙岩, 孟德虹, 等. CRM翼身组合体模型高阶精度数值模拟[J]. 航空学报, 2017, 38(3): 120298. |
WANG Y T, SUN Y, MENG D H, et al. High-order numerical simulation of CRM wing-body model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 120298 (in Chinese). | |
31 | TU G H, DENG X G, MAO M L. Assessment of two turbulence models and some compressibility corrections for hypersonic compression corners by high-order difference schemes[J]. Chinese Journal of Aeronautics, 2012, 25(1): 25-32. |
32 | TU G H, DENG X G, MAO M L. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(4): 805-811. |
33 | WANG S Y, DENG X G, WANG G X, et al. Blending the eddy-viscosity and reynolds-stress models using uniform high-order discretization[J]. AIAA Journal, 2020, 58(12): 5361-5378. |
34 | WANG S Y, FU X, DENG X G. Higher-order aerodynamic numerical simulations in compressible RANS framework with inverse-ω scale variable[J]. Aerospace Science and Technology, 2022, 131: 107971. |
35 | FU X, DENG X G, WANG S Y, et al. High-order discretization of the Reynolds stress model with an ε_β-adaptive algorith[J]. Acta Mechanica Sinica, 2022, 38(6): 1-14. |
36 | FU X, WANG S Y, DENG X G. Assessment of alternative scale-providing variables in a Reynolds-stress model using high-order methods[J]. Acta Mechanica Sinica, 2022, 38(12): 1-15. |
37 | LI M, LIU W, ZHANG L P, et al. Applications of high order hybrid DG/FV schemes for two-dimensional RANS simulations[J]. Procedia Engineering, 2015, 126: 628-632. |
38 | JIANG Z H, YAN C, YU J, et al. A spalart-allmaras turbulence model implementation for high-order discontinuous Galerkin solution of the reynolds-averaged navier-stokes equations[J]. Flow, Turbulence and Combustion, 2016, 96(3): 623-638. |
39 | DZANIC T, GIRIMAJI S S, WITHERDEN F D. Partially-averaged Navier-Stokes simulations of turbulence within a high-order flux reconstruction framework[J]. Journal of Computational Physics, 2022, 456: 110992. |
40 | COCKBURN B, SHU C W. TVB runge-kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework[J]. Mathematics of Computation, 1989, 52(186): 411. |
41 | COCKBURN B, HOU S, SHU C W. The runge-kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: The multidimensional case[J]. Mathematics of Computation, 1990, 54(190): 545. |
42 | DENG X G, LIU X, MAO M L, et al. Investigation on weighted compact fifth-order nonlinear scheme and applications to complex flow[C]∥Proceedings of the 17th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2005. |
43 | WANG S Y, DONG Y D, DENG X G, et al. High-order simulation of aeronautical separated flows with a reynold stress model[J]. Journal of Aircraft, 2018, 55(3): 1177-1190. |
44 | ZHENG S C, DENG X G, WANG D F, et al. A parameter-free ε⁃ adaptive algorithm for improving weighted compact nonlinear schemes[J]. International Journal for Numerical Methods in Fluids, 2019, 90(5): 247-266. |
45 | PONT G, BRENNER P, CINNELLA P, et al. Multiple-correction hybrid k-exact schemes for high-order compressible RANS-LES simulations on fully unstructured grids[J]. Journal of Computational Physics, 2017, 350: 45-83. |
46 | NGUYEN N, PERSSON P O, PERAIRE J. RANS solutions using high order discontinuous Galerkin methods[C]∥Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
47 | OLIVER T, DARMOFAL D. An unsteady adaptation algorithm for discontinuous Galerkin discretizations of the RANS equations[C]∥Proceedings of the 18th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2007. |
48 | CRIVELLINI A, D’ALESSANDRO V, BASSI F. High-order discontinuous Galerkin solutions of three-dimensional incompressible RANS equations[J]. Computers & Fluids, 2013, 81: 122-133. |
49 | WANG Z J, ZHANG L P, LIU Y. Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems[J]. Journal of Computational Physics, 2004, 194(2): 716-741. |
50 | LIU Y, VINOKUR M, WANG Z J. Spectral difference method for unstructured grids I: Basic formulation[J]. Journal of Computational Physics, 2006, 216(2): 780-801. |
51 | HAGA T, FURUDATE M, SAWADA K. RANS simulation using high-order spectral volume method on unstructured tetrahedral grids[C]∥Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
52 | HUYNH H T. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods[C]∥Proceedings of the 18th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2007. |
53 | WANG Z J, HUYNH H T. A review of flux reconstruction or correction procedure via reconstruction method for the Navier-Stokes equations[J]. Mechanical Engineering Reviews, 2016, 3(1): 15-475. |
54 | ZHU H, FU S, SHI L, et al. A hybrid RANS-implicit LES approach for the high-order FR/CPR method[C]∥ Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
55 | JIANG Z H, YAN C, YU J. Implementation of the transition model for high order discontinuous Galerkin method with hybrid discretization strategy[J]. Compu-ters & Fluids, 2021, 218: 104838. |
56 | NASR N BEN, GEROLYMOS G A, VALLET I. Low-diffusion approximate Riemann solvers for Reynolds-stress transport[J]. Journal of Computational Physics, 2014, 268: 186-235. |
57 | ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1997, 135(2): 250-258. |
58 | SPEZIALE C G. Turbulence modeling in noninertial frames of reference[J]. Theoretical and Computational Fluid Dynamics, 1989, 1(1): 3-19. |
59 | ZHA G C. Low diffusion efficient upwind scheme[J]. AIAA Journal, 2005, 43(5): 1137-1140. |
60 | TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves, 1994, 4(1): 25-34. |
61 | LIOU M S. A sequel to AUSM: AUSM+[J]. Journal of Computational Physics, 1996, 129(2): 364-382. |
62 | LIOU M S. A sequel to AUSM, part II: AUSM+-up for all speeds[J]. Journal of Computational Physics, 2006, 214(1): 137-170. |
63 | LEER B V, THOMAS J L, ROE P L, NEWSOME R W. A comparison of numerical flux for mulasforthe Euler and Navier-Stokese quations[C]∥Proceedings of the 8th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 1987. |
64 | STEGER J L, WARMING R F. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods[J]. Journal of Computational Physics, 1981, 40(2): 263-293. |
65 | LIU F, ZHENG X Q. A strongly coupled time-marching method for solving the navier-stokes andk-ω turbulence model equations with multigrid[J]. Journal of Computational Physics, 1996, 128(2): 289-300. |
66 | BARAKOS G, DRIKAKIS D. Implicit unfactored implementation of two-equation turbulence models in compressible Navier-Stokes methods[J]. International Journal for Numerical Methods in Fluids, 1998, 28(1): 73-94. |
67 | 夏陈超, 陈伟芳, 郭中州, 等. 隐式紧耦合SST和TNT湍流模型的高速流动数值模拟[J]. 航空动力学报, 2015, 30(4): 936-943. |
XIA C C, CHEN W F, GUO Z Z, et al. Numerical simulation of implicit fully coupled SST and TNT turbulence models for high speed flows[J]. Journal of Aerospace Power, 2015, 30(4): 936-943 (in Chinese). | |
68 | 王圣业. 高精度WCNS格式在亚/跨声速分离流动中的应用研究[D]. 长沙: 国防科技大学, 2018. |
WANG S Y. Application research of high-order weighted compact nonlinear schemes in subsonic/transonic separated flows[D]. Changsha: National University of Defense Technology, 2018 (in Chinese). | |
69 | 陈江涛, 章超, 吴晓军, 等. 考虑数值离散误差的湍流模型选择引入的不确定度量化[J]. 航空学报, 2021, 42(9): 625741. |
CHEN J T, ZHANG C, WU X J, et al. Quantification of turbulence model-selection uncertainties considering discretization errors[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625741 (in Chinese). | |
70 | HUANG P, COAKLEY T. An implicit Navier-Stokes code for turbulent flow modeling[C]∥Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
71 | LAUNDER B E, SHARMA B I. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc[J]. Letters in Heat and Mass Transfer, 1974, 1(2): 131-137. |
72 | WILCOX D C. Turbulence modeling for CFD[M]. 3rd edition. La Canada: DCW Industies, Inc, 2006. |
73 | BATTEN P, LESCHZINER M A, GOLDBERG U C. Average-state jacobians and implicit methods for compressible viscous and turbulent flows[J]. Journal of Computational Physics, 1997, 137(1): 38-78. |
74 | MERKLE C L, DESHPANDE M, VENKATESWARAN S. Efficient implementation of turbulence modeling in computational schemes[C]∥Proceedings of the Second US National Congress on Computational Mechanics. Oxford: Pergamon Press, 1993. |
75 | MERCI B, STEELANT J, VIERENDEELS J, et al. Computational treatment of source terms in two-equation turbulence models[J]. AIAA Journal, 2000, 38(11): 2085-2093. |
76 | YANG Z, SHIH T H. New time scale based k-epsilon model for near-wall turbulence[J]. AIAA Journal, 1993, 31(7): 1191-1198. |
77 | MOR-YOSSEF Y, LEVY Y. Unconditionally positive implicit procedure for two-equation turbulence models: application to k-ω turbulence models[J]. Journal of Computational Physics, 2006, 220(1): 88-108. |
78 | MOR-YOSSEF Y. Robust turbulent flow simulations using a Reynolds-stress-transport model on unstructured grids[J]. Computers & Fluids, 2016, 129: 111-133. |
79 | CHASSAING J C, GEROLYMOS G A, VALLET I. Efficient and robust reynolds-stress model computation of three-dimensional compressible flows[J]. AIAA Journal, 2003, 41(5): 763-773. |
80 | CHAOUAT B. Reynolds stress transport modeling for high-lift airfoil flows[J]. AIAA Journal, 2006, 44(10): 2390-2403. |
81 | MOR-YOSSEF Y. Unconditionally stable time marching scheme for Reynolds stress models[J]. Journal of Computational Physics, 2014, 276: 635-664. |
82 | NGUYEN N, PERSSON P O, PERAIRE J. RANS solutions using high order discontinuous Galerkin methods[C]∥Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
83 | BURGESS N, MAVRIPLIS D. Robust computation of turbulent flows using a discontinuous Galerkin method[C]∥ Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
84 | MORO D, NGUYEN N C, PERAIRE J. Navier-stokes solution using hybridizable discontinuous Galerkin methods[C]∥20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011. |
85 | ALLMARAS S R, JOHNSON F T, SPALART P R. Modications and Clarications for the Implementation of the Spalart-Allmaras Turbulence Model[J]. Computational Fluid Dynamics, 2012. |
86 | 是勋刚. 湍流[M]. 天津: 天津大学出版社, 1994. |
SHI X G. Rapids[M]. Tianjin: Tianjin University Press, 1994 (in Chinese). | |
87 | CHOU P Y. On velocity correlations and the solutions of the equations of turbulent fluctuation[J]. Quarterly of Applied Mathematics, 1945, 3(1): 38-54. |
88 | SPEZIALE C G, ABID R, ANDERSON E C. Critical evaluation of two-equation models for near-wall turbulence[J]. AIAA Journal, 1992, 30(2): 324-331. |
89 | CHIEN K Y. Predictions of channel and boundary-layer flows with a low-reynolds-number turbulence model[J]. AIAA Journal, 1982, 20(1): 33-38. |
90 | CRAFT T J, LAUNDER B E. A Reynolds stress closure designed for complex geometries[J]. International Journal of Heat and Fluid Flow, 1996, 17(3): 245-254. |
91 | KOLMOGOROV A N. Equations of Turbu1ent Motion of an Incompressib1e F1uid. Izvestia Ac demy of Sciences[J]. USSR: Physics, 1942, 6(1-2): 56-58. |
92 | ILINCA F, PELLETIER D. Positivity preservation and adaptive solution for the k-ε model of turbulence[J]. AIAA Journal, 1998, 36(1): 44-50. |
93 | ILINCA F, PELLETIER D. Positivity preservation and adaptive solution of two-equation models of turbulence[J]. International Journal of Thermal Sciences, 1999, 38(7): 560-571. |
94 | KALITZIN G, GOULD A BENTON J. Application of two-equation turbulence models in aircraft design[C]∥Proceedings of the 34th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1996. |
95 | TOGITI V K, EISFELD B. Assessment of g-equation formulation for a second-moment Reynolds stress turbulence model[C]∥Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2015. |
96 | ROTTA J. Statistische theorie nichthomogener turbulenz[J]. Zeitschrift Für Physik, 1951, 129(6): 547-572. |
97 | MENTER F R, EGOROV Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description[J]. Flow, Turbulence and Combustion, 2010, 85(1): 113-138. |
98 | ABDOL-HAMID K S. Assessments of k-kL turbulence model based on menter’s modification to rotta’s two-equation model[J]. International Journal of Aerospace Engineering, 2015, 2015: 1-18. |
99 | HANJALIE K, LAUNDER B E. Contribution towards a Reynolds stress closure for low-Reynolds-number turbulence[J]. Journal of Fluid Mechanics, 1976, 74(4): 593-610. |
100 | YAKHOT V, ORSZAG S A. Renormalization group analysis of turbulence: I. Basic theory[J]. Journal of Scientic Computing, 1986, 1(1): 1-51. |
101 | SHIMA N. Low-Reynolds-number second-moment closure without wall-reflection redistribution terms[J]. International Journal of Heat and Fluid Flow, 1998, 19(5): 549-555. |
102 | CRAFT T J, LAUNDER B E. A Reynolds stress closure designed for complex geometries[J]. International Journal of Heat and Fluid Flow, 1996, 17(3): 245-254. |
103 | CRAFT T J. Developments in a low-Reynolds-number second-moment closure and its application to separating and reattaching flows[J]. International Journal of Heat and Fluid Flow, 1998, 19(5): 541-548. |
104 | JAKIRLIC S, HANJALIC K. A new approach to modelling near-wall turbulence energy and stress dissipation[J]. Journal of Fluid Mechanics, 2002, 459: 139-166. |
105 | EISFELD B, TOGITI V, BRAUN S,et al. Reynolds-stress model computations of the NASA juncture flow experiment[C]∥Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
106 | KOK J C, SPEKREIJSE S P. Efficient and accurate implementation of the k-ω turbulence model in the NLR multi-block Navier-Stokes system[C]∥Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering. Barcelona: ECCOMAS, 2000. |
107 | XIAO Z X, CHEN H X, Fu S, et al. Computations with k-g model for complex configurations at high-incidence[J]. Journal of Aircraft, 2005, 42(2):462-468. |
108 | LAKSHMIPATHY S, TOGITI V. Assessment of alternative formulations for the specific-dissipation rate in RANS and variable-resolution turbulence models[C]∥Proceedings of the 20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011. |
109 | RODI W, SPALDING D B. A two-parameter model of turbulence, and its application to free jets[J]. Wärme-Und Stoffübertragung, 1970, 3(2): 85-95. |
110 | 王新光, 毛枚良, 何琨, 等. 壁面函数在超声速湍流模拟中的应用[J]. 航空学报, 2022, 43(9): 126153. |
WANG X G, MAO M L, HE K, et al. Application of wall function to supersonic turbulence simulation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 126153 (in Chinese). | |
111 | 徐晶磊, 阎超, 范晶晶. 通过求解输运方程计算壁面距离[J]. 应用数学和力学, 2011, 32(2): 135-143. |
XU J L, YAN C, FAN J J. Computations of wall distances by solving a transport equation[J]. Applied Mathematics and Mechanics, 2011, 32(2): 135-143 (in Chinese). | |
112 | NITHIARASU D P, LIU D C B, TUCKER P P G. Wall distance calculation using Eikonal/Hamilton-Jacobi equations on unstructured meshes—A finite element approach[J]. Engineering Computations, 2010, 27(5): 645-657. |
113 | 刘君, 韩芳, 魏雁昕. 应用维数分裂方法推广MUSCL和WENO格式的若干问题[J]. 航空学报, 2022, 43(3): 125009. |
LIU J, HAN F, WEI Y X. MUSCL and WENO schemes problems generated by dimension splitting approach[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 125009 (in Chinese). | |
114 | DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4): 1100-1115. |
115 | DENG X G, MIN Y B, MAO M L, et al. Further studies on Geometric Conservation Law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239: 90-111. |
116 | GHATE A, LELE S K. Finite difference methods for turbulence simulations[M]∥Numerical Methods in Turbulence Simulation. Amsterdam: Elsevier, 2023: 235-284. |
117 | JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. |
118 | FU L. A very-high-order TENO scheme for all-speed gas dynamics and turbulence[J]. Computer Physics Communications, 2019, 244: 117-131. |
119 | LELE S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103(1): 16-42. |
120 | KUYA Y, KAWAI S. High-order accurate kinetic-energy and entropy preserving (KEEP) schemes on curvilinear grids[J]. Journal of Computational Physics, 2021, 442: 110482. |
121 | 任玉新, 王乾, 潘建华, 等. 构建非结构网格高精度有限体积方法的新途径[J]. 航空学报, 2021, 42(9): 625783. |
REN Y X, WANG Q, PAN J H, et al. Novel approaches to design of high order finite volume schemes on unstructured grids[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625783 (in Chinese). | |
122 | BUI T T. A parallel, finite-volume algorithm for large-eddy simulation of turbulent flows[J]. Computers & Fluids, 2000, 29(8): 877-915. |
123 | TRAVIN A, SHUR M, STRELETS M, et al. Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows[M]∥Fluid Mechanics and Its Applications. Dordrecht: Springer Netherlands, 2002: 239-254. |
124 | 张扬. 基于混合网格的飞行器大迎角DES类数值模拟方法研究[D]. 绵阳: 中国空气动力研究与发展中心, 2016: 19-20. |
ZHANG Y. Detached-eddy simulation of aircrafts at high incidence based on hybrid grids[D]. Mianyang: China Aerodynamics Research and Development Center, 2016: 19-20 (in Chinese). | |
125 | 姜屹. 线性耗散紧致格式应用于计算气动声学的基础研究[D]. 绵阳: 中国空气动力研究与发展中心, 2009: 13-15. |
JIANG Y. Preliminary study of dissipative compact schemes using for computational aero acoustics[D]. Mianyang: China Aerodynamics Research and Development Center, 2009: 13-15 (in Chinese). | |
126 | LI H, LIU W, WANG S Y, et al. High-order delayed detached eddy simulation of separated flow with self-adaptive dissipation[J]. Journal of Aircraft, 2021, 58(3): 514-525. |
127 | WONG M L, LELE S K. High-order localized dissipation weighted compact nonlinear scheme for shock- and interface-capturing in compressible flows[J]. Journal of Computational Physics, 2017, 339: 179-209. |
128 | HU X Y, WANG Q, ADAMS N A. An adaptive central-upwind weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2010, 229(23): 8952-8965. |
129 | Langley Research Center, NASA. Turbulence modeling resource[EB/OL]. [2023-03-31]. . |
130 | KROLL N, BIELER H, DECONINCK H. ADIGMA - A european initiative on the development of adaptive higher-order variational methods for aerospace applications[M]∥ Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol 113. Berlin, Heidelberg: Springer, 2010. |
131 | The international workshop on high order CFD methods: Advanced and complex test cases[EB/OL]. [2023-03-31]. . |
132 | MAVRIPLIS D J. Progress in CFD discretizations, algorithms and solvers for aerodynamic flows[C]∥ Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
133 | VISBAL M R, GAITONDE D V. On the use of higher-order finite-difference schemes on curvilinear and deforming meshes[J]. Journal of Computational Physics, 2002, 181(1): 155-185. |
134 | NONOMURA T, IIZUKA N, FUJII K. Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids[J]. Computers & Fluids, 2010, 39(2): 197-214. |
135 | GALBRAITH M C, KARMAN S L. HLPW-4/GMGW-3: High order discretization technology focus group workshop summary[C]∥Proceedings of the AIAA AVIATION 2022 Forum. Reston: AIAA, 2022. |
136 | NICHOLS R H. A Summary of the turbulence models in the CREATETM-AV kestrel flow solvers[C]∥Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
137 | NARDUCCI R. Industry assessment of HPCMP CREATETM-AV helios[C]∥Proceedings of the 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
138 | HOLST K R, GLASBY R S, ERWIN J T, et al. Current status of the finite-element fluid solver (COFFE) within HPCMP CREATE™-AV kestrel[C]∥Proceedings of the AIAA Scitech 2021 Forum. Reston: AIAA, 2021. |
[1] | Qi LIU, Yongjie SHI, Zhiyuan HU, Guohua XU. Parameter effects analysis on aerodynamic and aeroacoustic characteristics of coaxial rigid rotor [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528856-528856. |
[2] | Wenchang WU, Yankai MA, Xingsi HAN, Yaobing MIN, Zhenguo YAN. Smooth TENO nonlinear weighting for WCNS scheme [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 129052-129052. |
[3] | Fengxia LU, Kun WEI, Chunlei WANG, Heyun BAO, Rupeng ZHU. Accessibility of metal particles in three-phase flow of helicopter intermediate gearbox [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 128524-128524. |
[4] | Jiong REN, Gang WANG, Guodong HU, Xiaolu SHI. Adaptive finite volume method with Walsh basis functions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127444-127444. |
[5] | Wenbo CAO, Yilang LIU, Weiwei ZHANG. Accelerated convergence method for fluid dynamics solvers based on reduced⁃order model and gradient optimization [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127090-127090. |
[6] | Sihua LIU, Zhanying WANG, Lijian LI, Mindi ZHANG. Influence of nose shapes on high-speed water entry stability of projectile [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528437-528437. |
[7] | Yuxiang FAN, Rui ZHAO, Zhengxuan ZUO, Guang YANG, Yu LI. Gas⁃injection effects on wall heat flux and skin⁃friction of vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528587-528587. |
[8] | Jianling QIAO, Zhonghua HAN, Yulin DING, Wenping SONG, Bifeng SONG. Effects of stratified atmospheric turbulence on farfield sonic boom propagation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626350-626350. |
[9] | XIAHOU Tangfan, CHEN Jiangtao, SHAO Zhidong, WU Xiaojun, LIU Yu. Model validation metrics for CFD numerical simulation under aleatory and epistemic uncertainty [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 25716-025716. |
[10] | CHEN Guangqiang, DOU Guohui, WEI Haogong, ZOU Xin, LI Qi, LIU Zhou, ZHOU Weijiang. Air data sensing technology of Mars probe [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 626619-626619. |
[11] | YI Jianmiao, DENG Feng, QIN Ning, LIU Xueqiang. Fast prediction of transonic flow field using deep learning method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526747-526747. |
[12] | WANG Di, QIAN Zhansen, LENG Yan. High-order scheme discretization of sonic boom propagation model based on augmented Burgers equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 124916-124916. |
[13] | BAO Jun, WANG Yu, NIU Qian, ZHU Xidong, CHENG Jianjie. Influencing parameters and film flow mechanism of spray droplet impacting liquid film [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(S1): 726360-726360. |
[14] | CHEN Jianqiang, WU Xiaojun, ZHANG Jian, LI Bin, JIA Hongyin, ZHOU Naichun. FlowStar: General unstructured-grid CFD software for National Numerical Windtunnel (NNW) Project [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 625739-625739. |
[15] | LI Zuobiao, WEN Fengbo, TANG Xiaolei, SU Liangjun, WANG Songtao. Prediction of single-row hole film cooling performance based on deep learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524331-524331. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341