[1] HUFF R, MARTORELLA P, MCNEILL W, et al. Carrier landing simulation results of precision flight path controllers in manual and automatic approach[C]//Proceedings of the 10th AIAA Atmospheric Flight Mechanics Conference. Reston:AIAA, 1983:1-9.
[2] 杨一栋, 张宏军, 姜义庆. 舰载机着舰引导技术译文集[M]. 北京:国防工业出版社, 2003. YANG Y D, ZHANG H J, JIANG Y Q. Translation collection of carrier landing guidance technique of carrier-based aircraft[M]. Beijing:National Defense Industry Press, 2003(in Chinese).
[3] 杨一栋, 余俊雅. 舰载飞机着舰引导与控制[M]. 北京:国防工业出版社, 2006. YANG Y D, YU J Y. Carrier landing guidance and control of carrier-based aircraft[M]. Beijing:National Defense Industry Press, 2006(in Chinese).
[4] 杨一栋. 舰载机进场着舰规范评估[M]. 北京:国防工业出版社, 2006. YANG Y D. Review of the carrier approach criteria[M]. Beijing:National Defense Industry Press, 2006(in Chinese).
[5] 杨一栋, 张宏军, 谭玮. 自动着舰引导系统验证指南[M]. 北京:国防工业出版社, 2007. YANG Y D, ZHANG H J, TAN W. Automatic carrier landing system certification manual[M]. Beijing:National Defense Industry Press, 2007(in Chinese).
[6] 杨一栋, 姜龙光, 许卫宝. 舰载机光学着舰引导控制要素[M]. 北京:国防工业出版社, 2008. YANG Y D, JIANG L G, XU W B. Outer-loop control factor for carrier aircraft[M]. Beijing:National Defense Industry Press, 2008(in Chinese).
[7] 杨一栋, 姜平, 杨民, 等. 仪表与微波着舰引导系统[M]. 北京:国防工业出版社, 2008. YANG Y D, JIANG P, YANG M, et al. Instrument carrier landing system and microwave landing system[M]. Beijing:National Defense Industry Press, 2008(in Chinese).
[8] 杨一栋, 余俊雅, 杨亚明. 舰载机着舰飞行训练认证指南[M]. 北京:国防工业出版社, 2008. YANG Y D, YU J Y, YANG Y M. Flight training qualification guide for carrier aircraft[M]. Beijing:National Defense Industry Press, 2008(in Chinese).
[9] 杨一栋, 胡建兴, 卢永锦. 光学着舰助降系统[M]. 北京:国防工业出版社, 2008. YANG Y D, HU J X, LU Y J. Carrier optical landing aid system[M]. Beijing:National Defense Industry Press, 2008(in Chinese).
[10] DAVIES W D T, NOURY R. AN/SPN-42 automatic carrier landing system:AD74-35209[R]. New York:Bell Aerospace Company, 1974.
[11] URNES J M, HESS R K. Development of the F/A-18A automatic carrier landing system[J]. Journal of Guidance, Control, and Dynamics, 1985, 8(3):289-295.
[12] PRICKETT A L, PARKES C J. Flight testing of the F/A-18E/F automatic carrier landing system[C]//Proceedings of 2001 IEEE Proceedings of Aerospace Conference. Piscataway, NJ:IEEE Press, 2001:2593-2612.
[13] MCPEAK M A. Joint USAF-USN mission need statement for precision approach and landing capability:USAF 002-94[R]. Washington, D.C.:United States Air Force, 1994.
[14] ELLIS J D. A review and analysis of precision approach and landing system (PALS) certification procedures[D]. Knoxville:University of Tennessee, 2003:1-55.
[15] JOHNSON G, PETERSON B, TAYLOR J, et al. Test results of F/A-18 autoland trials for aircraft carrier operations[C]//Proceedings of IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2001:1283-1291.
[16] SOUSA P, WELLONS L, COLBY G, et al. Test results of an F/A-18 automatic carrier landing using shipboard relative GPS[J]. International Journal of Mechanics & Materials in Design, 2003, 7(1):29-44.
[17] 王丹, 王玮. 机载光电/惯性组合着舰导引算法研究[J]. 仪器仪表学报, 2011, 32(6):1311-1316. WANG D, WANG W. Study on aircraft carrier landing algorithm based on airborne electro-optical/inertial integrated navigation system[J]. Chinese Journal of Scientific Instrument, 2011, 32(6):1311-1316(in Chinese).
[18] 王丹, 王玮, 冯培德. 机载光电/惯性组合着舰导引算法的地面验证[J]. 中国惯性技术学报, 2012, 20(2):56-60. WANG D, WANG W, FENG P D. Field verification of aircraft carrier landing algorithm based on integrated airborne infrared camera/inertial navigation system[J]. Journal of Chinese Inertial Technology, 2012, 20(2):56-60(in Chinese).
[19] 吴文海, 拜斌, 范海震, 等. 基于光电引导的全天候自动着舰模式研究[J]. 飞行力学, 2013, 31(2):126-129. WU W H, BAI B, FAN H Z, et al. Research on all-weather automatic carrier landing based on opto-electronic guidance[J]. Flight Dynamics, 2013, 31(2):126-129(in Chinese).
[20] COUTARD L, CHAUMETTE F, PFLIMLIN J M. Automatic landing on aircraft carrier by visual servoing[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE Press, 2011:2843-2848.
[21] COUTARD L, CHAUMETTE F. Visual detection and 3d model-based tracking for landing on aircraft carrier[C]//Proceedings of IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2011:1746-1751.
[22] DING Z X, LI K, MENG Y, et al. FLIR/INS/RA integrated landing guidance for landing on aircraft carrier[J]. International Journal of Advanced Robotic Systems, 2015, 12:1-9.
[23] 潘婷婷, 江驹, 王新华, 等. 舰载机着舰多模态转换技术研究[J]. 飞行力学, 2014, 32(1):25-28. PAN T T, JINAG J, WANG X H, et al. Research on multiple mode conversion technology of carrier-based aircraft landing[J]. Flight Dynamics, 2014, 32(1):25-28(in Chinese).
[24] Joint strike fighter (JSF) model specification[R]. Washington, D. C.:Joint Strike Fighter Program Office, Distribution Statement, 2000.
[25] RUDOWSKY T, COOK S, HYNES M, et al. Review of the carrier approach criteria for carrier-based aircraft-phase I:NAWCADPAX/TR-2002/71[R]. Maryland:Naval Air Warfare Center Aircraft Division, 2002.
[26] 许东松, 王立新, 贾重任. 舰载飞机着舰过程的参数适配特性[J]. 航空学报, 2012, 33(2):199-207. XU D S, WANG L X, JIA Z R. Parameter matching characteristics of carrier-based aircraft during the landing process[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2):199-207(in Chinese).
[27] CONNELLY E M. Performance measures for aircraft landings as a function of aircraft dynamics:N85-14565[R]. Massachusetts:Performance Measurement Associates Inc., 1985.
[28] 杨一栋, 郑峰婴, 王新华, 等. 舰载机等效模型及着舰控制规范[M]. 北京:国防工业出版社, 2013. YANG Y D, ZHENG F Y, WANG X H, et al. Equivalent models and landing control criterion of carrier based aircraft[M]. Beijing:National Defense Industry Press, 2013(in Chinese).
[29] DAVIES W D T, NOURY R. AN/SPN-42 automatic carrier landing system[C]//Proceedings of the First Annual Advanced Control Conference. Lafayette:Dun-Donnelley Publ. Corp., 1974:99-110.
[30] BALDERSON K A, GAUBLOMME D P, THOMAS J W. Simulation validation through linear model comparison[C]//Proceedings of Flight Simulation Technologies Conference. Reston:AIAA, 1996:490-500.
[31] SCHUST A P, YOUNG P N, SIMPSON W R. Automatic carrier landing system (ACLS) category III certification manual:AD-A1181817[R]. Maryland:ARINC Research Corporation, 1982.
[32] 张明廉, 徐军. 舰载飞机自动着舰系统的研究[J]. 北京航空航天大学学报, 1994, 20(4):386-391. ZHANG M L, XU J. Studies on automatic carrier landing system for carrier aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 1994, 20(4):386-391(in Chinese).
[33] 夏桂华, 董然, 孟雪, 等. 舰载机着舰的动力学建模[J]. 哈尔滨工程大学学报, 2014, 35(4):445-456. XIA G H, DONG R, MENG X, et al. Research on the dynamic modeling for the landing of a carrier-based aircraft[J]. Journal of Harbin Engineering University, 2014, 35(4):445-456(in Chinese).
[34] 夏桂华, 董然, 许江涛, 等. 考虑扰流的舰载机终端进场线性模型[J]. 航空学报, 2016, 37(3):970-983. XIA G H, DONG R, XU J T, et al. Linearized carrier-based aircraft model in final approach phase with air turbulence considered[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):970-983(in Chinese).
[35] XIA G H, DONG R, XU J T, et al. Linearized model of carrier-based aircraft dynamics in final-approach air condition[J]. Journal of Aircraft, 2016, 53(1):33-47.
[36] KUKREJA SUNIL L, BRENNER M J. Nonlinear black-box modeling of aeroelastic systems using structure detection approach:application to F/A-18 aircraft data[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):557-564.
[37] WARD D G, MONACO J F. System identification for retrofit reconfigurable control of an F/A-18 aircraft[J]. Journal of Aircraft, 2005, 42(1):63-72.
[38] BOELY N, BOTEZ R M, KOUBA G. Identification of an F/A-18 nonlinear model between control and structural deflections[C]//Proceedings of 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009:1-31.
[39] BOELY N, BOTEZ R M, KOUBA G. Identification of a non-linear F/A-18 model by the use of fuzzy logic and neural network methods[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2010, 225(5):559-574.
[40] 甄子洋, 姬猛, 王新华, 等. 双发舰载飞机单发停车的安全着舰控制方法:ZL201110132929.6[P]. 2013-04-07. ZHEN Z Y, JI M, WANG X H, et al. Safe carrier landing method of double-engine carrier-based aircraft:ZL201110132929.6[P]. 2013-04-07(in Chinese).
[41] 吴文海, 张双中亚, 王奇, 等. 单发停车下滑着舰飞行动力学仿真分析[J]. 飞行力学, 2014, 32(6):489-493. WU W H, ZHANG S Z Y, WANG Q, et al. Simulation and analysis of one engine out glide carrier landing flight dynamics[J]. Flight Dynamics, 2014, 32(6):489-493(in Chinese).
[42] 刘智汉, 袁东, 刘超. 舰载机多体动力学仿真建模及起降过程分析[J]. 飞行力学, 2012, 30(6):485-488. LIU Z H, YUAN D, LIU C. Multi-body dynamics simulation modeling and takeoff/landing process analysis of carrier-based aircraft[J]. Flight Dynamics, 2012, 30(6):485-488(in Chinese).
[43] 杨一栋, 甄子洋, 徐佳龙, 等. 无人机着舰制导与控制[M]. 北京:国防工业出版社, 2013. YANG Y D, ZHEN Z Y, XU J L, et al. UAV carrier landing guidance and control[M]. Beijing:National Defense Industry Press, 2013(in Chinese).
[44] FORTENBAUGH R L. Practical integration of direct lift control into an automatic carrier landing system[C]//Proceedings of AIAA Guidance and Control Conference. Reston:AIAA, 1972:1-10.
[45] FITZGERALD P. Flight control system design for autonomous UAV carrier landing[D]. Cranfield:Cranfield University, 2004:131-163.
[46] CLARK J W, MILLER D P. Investigation of the use of vectored thrust during carrier landings[J]. Journal of Aircraft, 1966, 3(4):310-317.
[47] HELLER M, DAVID R, HOLMBERG J. Falling leaf motion suppression in the F/A-18 Hornet with revised flight control software[C]//Proceedings of 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2004:1-11.
[48] HELLER M, NIEWOEHNER R J, LAWSON K P. F/A-18E/F super hornet high-angle-of-attack control law development and testing[J]. Journal of Aircraft, 2001, 38(5):841-847.
[49] CHAKRABORTY A, SEILER P, BALAS G. Susceptibility of F/A-18 flight controllers to the falling-leaf mode:Linear analysis[J]. AIAA Journal of Guidance, Control, and Dynamics, 2011, 34(1):57-72.
[50] CHAKRABORTY A, SEILER P, BALAS G. Susceptibility of F/A-18 flight controllers to the falling-leaf mode:nonlinear analysis[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(1):73-85.
[51] BANNETT R J. Optimal control of the F-8C in a fully automatic carrier approach:AD-753010[R]. Springfield:National Technical Information Service, 1972.
[52] 尹海韬, 王新民, 李乐尧, 等. 基于降阶解耦的最优伺服控制器设计及在着舰控制上的应用[J]. 西北工业大学学报, 2013, 31(3):464-469. YIN H T, WANG X M, LI L Y, et al. Designing optimal servo (OS) controller with reduced-order decoupling and its application to landing control[J]. Journal of Northwestern Polytechnical University, 2013, 31(3):464-469(in Chinese).
[53] FAN Y G, LUTZE F H, CLIFF E M. Time-optimal lateral maneuvers of an aircraft[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(5):1106-1112.
[54] CRASSIDIS J L, MOOK D J. Robust control design of an automatic carrier landing system[C]//Proceedings of Proceedings of the AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 1992:1471-1482.
[55] SUBRAHMANYAM M B. H∞ design of F/A-18A automatic carrier landing system[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(1):187-191.
[56] NIEWOEHNER R J, KAMINER I. Design of an autoland controller for carrier-based F-14 aircraft using H∞ output-feedback synthesis[C]//Proceedings of the American Control Conference. Piscataway, NJ:IEEE Press, 1994:2501-2505.
[57] SUBRAHMANYAM M B. Finite horizon H∞ and related control problems[M]. Boston:Birkhäuser Boston, 1995:93-116.
[58] BALAS G J, PACKARD A K, RENFROW J, et al. Control of the F-14 aircraft lateral-directional axis during powered approach[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6):899-908.
[59] TU K Y, SIDERIS A, MEASE K D, et al. Robust lateral-directional control design for the F/A-18[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 1999:1213-1219.
[60] CHE J, CHEN D G. Automatic landing control using H∞ control and stable inversion[C]//Proceedings of the 40th IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 2001:241-246.
[61] YANG X, MEASE K D, SIDERIS A, et al. Modern design and classical performance assessment of an F/A-18 experimental flight controller[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2001:1-8.
[62] LIND R, BURKEN J. μ-synthesis of an F/A-18 controller[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2000:1-11.
[63] 袁锁中, 杨京, 龚华军, 等. 着舰导引系统H∞ 控制器设计[J]. 南京航空航天大学学报, 1998, 30(4):377-381. YUAN S Z, YANG J, GONG H J, et al. Design of an automatic carrier landing system using H∞ synthesis[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1998, 30(4):377-381(in Chinese).
[64] 代世俊, 杨一栋, 余勇. 基于LMI的H∞飞行/推力综合控制系统设计[J]. 南京航空航天大学学报, 2002, 34(4):386-390. DAI S J, YANG Y D, YU Y. Design of flight/thrust integrated control system using LMI-based H∞ synthesis[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2002, 34(4):386-390(in Chinese).
[65] 余勇, 杨一栋, 代世俊. 着舰导引中的H∞飞行/推力控制系统研究[J]. 南京理工大学学报, 2003, 27(3):256-260. YU Y, YANG Y D, DAI S J. Study of flight/thrust control system using H∞ synthesis in carrier landing system[J]. Journal of Nanjing University of Science and Technology, 2003, 27(3):256-260(in Chinese).
[66] 朱齐丹, 闻子侠, 张智, 等. 舰载机着舰侧回路混合H∞/H2模型参考LPV控制[J]. 哈尔滨工程大学学报, 2013, 34(1):83-91. ZHU Q D, WEN Z X, ZHANG Z, et al. Carrier aircraft landing mixed H∞/H2 LPV model reference control during powered approach[J]. Journal of Harbin Engineering University, 2013, 34(1):83-91(in Chinese).
[67] 陈华坤, 章卫国, 王新民. 舰载机纵向自动着舰控制系统设计[J]. 弹舰与制导学报, 2007, 27(1):73-76. CHEN H K, ZHANG W G, WANG X M. Design of automatic control system for longitudinal landing on carrier[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 27(1):73-76(in Chinese).
[68] MUELLER J, BALAS G. Implementation and testing of LPV controllers for the NASA F/A-18 Systems Research Aircraft[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2000.
[69] BALAS G J, FIALHO I, PACKARD A K, et al. On the design of LPV controllers for the F-14 lateral-directional axis during powered approach[C]//Proceedings of the American Control Conference. Piscataway, NJ:IEEE Press, 1997:123-127.
[70] FIALHO I, BALAS G J, PACKARD A K, et al. Gain-scheduled lateral control of the F-14 aircraft during powered approach landing[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3):450-458.
[71] TOURNES C, LANDRUM B. F-14 aircraft lateral-directional adaptive control using subspace stabilization[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):167-169.
[72] BURKEN J, NGUYEN N, GRIFFIN B. Adaptive flight control design with optimal control modification for F-18 aircraft model[C]//Proceedings of AIAA Infotech@Aerospace. Reston:AIAA, 2010:1-17.
[73] SINGH L, MIOTTO P, BREGER L S. L1 adaptive control design for improved handling of the F/A-18 class of aircraft[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2013:1-12.
[74] BOSKOVIC J D, MEHRA R K. Multiple-model adaptive flight control scheme accommodation of actuator failures[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(4):712-724.
[75] BOSKOVIC J D. A new decentralized retrofit adaptive fault-tolerant flight control design[J]. International Journal of Adaptive Control and Signal Processing, 2014, 28(9):778-797.
[76] WINKER G M. Dynamic inversion plus proportional-integral controller for F/A-18[D]. California:University of California, 1999:30-80.
[77] MILLER C J. Nonlinear dynamic inversion baseline control law:Flight-test results for the full-scale advanced systems tested F/A-18 airplane[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2011:1-25.
[78] VANZWIETEN T S, GILLIGAN E T, WALL J H, et al. Adaptive augmenting control flight characterization experiment on an F/A-18:AAS 14-052[R]. Breckenridge:American Astronautical Society, 2014.
[79] JU H S, TSAI C C, LEE C. Flight path control design for glide-slope tracking by backstepping[C]//Proceedings of IEEE International Conference on Mechatronics. Piscataway, NJ:IEEE Press, 2005:887-892.
[80] JU H S, TSAI C C. Glidepath command generation and tracking for longitudinal autolanding[C]//Proceedings of the 17th IFAC World Congress. Laxenburg:International Federation of Automatic Control, 2008:1093-1098.
[81] LEE K, RAMASAMY S, SINGH S. Adaptive sliding mode 3-D trajectory control of F/A-18 model via SDU decomposition[C]//Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2008:1-22.
[82] ZHU Q D, WANG T, ZHONG X Y, et al. Adaptive variable structure guidance system design of a longitudinal automatic carrier landing system[C]//Proceedings of the 21st Chinese Control and Decision Conference. Piscataway, NJ:IEEE Press, 2009:4855-4859.
[83] 黄得刚, 章卫国, 邵山, 等. 舰载机自动着舰纵向控制系统设计[J]. 控制理论与应用, 2014, 31(12):1731-1739. HUANG D G, ZHANG W G, SHAO S, et al. Design of automatic control system for longitudinal landing on carrier[J]. Control Theory & Applications, 2014, 31(12):1731-1739(in Chinese).
[84] 朱齐丹, 孟雪, 张智. 基于非线性动态逆滑模的纵向着舰系统设计[J]. 系统工程与电子技术, 2014, 6(10):2037-2042. ZHU Q D, MENG X, ZHANG Z. Design of longitudinal carrier landing system using nonlinear dynamic inversion and sliding mode control[J]. Systems Engineering and Electronics, 2014, 6(10):2037-2042(in Chinese).
[85] JIANG X W, ZHU Q D, WEN Z X. Receding horizon control on automatic landing lateral loop of carrier-based aircraft[J]. Applied Mechanics and Materials, 2013, 300-301:1610-1616.
[86] 朱齐丹, 王立鹏, 张智, 等. 舰载机着舰侧回路时变风险权值矩阵线性变参数预测控制[J]. 控制理论与应用, 2015, 32(1):101-109. ZHU Q D, WANG L P, ZHANG Z, et al. Aircraft lateral linear parameter varying model predictive control with time varying weight[J]. Control Theory & Applications, 2015, 32(1):101-109(in Chinese).
[87] 甄子洋. 预见控制理论及应用研究进展[J]. 自动化学报, 2016, 42(2):172-188. ZHEN Z Y. Research development in preview control theory and application[J]. Acta Automatica Sinica, 2016, 42(2):172-188(in Chinese).
[88] 甄子洋, 王新华, 邵敏敏, 等. 基于控制器切换的舰载机自动着舰纵向控制器及其控制方法:CN2015102007283.3[P]. 2015-04-24. ZHEN Z Y, WANG X H, SHAO M M, et al. Controllers switching based ACLS longitudinal controller for carrier-based aircraft:CN2015102007283.3[P]. 2015-04-24(in Chinese).
[89] 甄子洋, 邵敏敏, 龚华军, 等. 基于鲁棒预见控制的舰载机自动着舰控制方法:CN201510158509.3[P]. 2015-04-03. ZHEN Z Y, SHAO M M, GONG H J, et al. Robust preview control based automatic carrier landing control for carrier-based aircraft:CN201510158509.3[P]. 2015-04-03(in Chinese).
[90] 邵敏敏, 龚华军, 甄子洋, 等. 基于H2预见控制的舰载机自动着舰控制方法[J]. 电光与控制, 2015(9):68-71. SHAO M M, GONG H J, ZHEN Z Y, et al. An H2 preview control based automatic landing control method for carrier based aircraft[J]. Electronics Optics & Control, 2015(9):68-71(in Chinese).
[91] STEINBERG M. A fuzzy logic based F/A-18 automatic carrier landing system[C]//Proceedings of AIAA Guidance, Navigation and Control Conference. Reston:AIAA, 1991:407-417.
[92] STEINBERG M. Development and simulation of an F/A-18 fuzzy logic automatic carrier landing system[C]//Proceedings of the Second IEEE International Conference on Fuzzy Systems. Piscataway, NJ:IEEE Press, 1993:797-802.
[93] MENG H, LI Y Z. Fuzzy controller design for automatic carrier landing of aircraft[C]//Proceedings of 33rd Chinese Control Conference. Piscataway, NJ:IEEE Press, 2014:4457-4461.
[94] 张敏, 陈博, 张宗麟. 舰载机横侧向着舰控制律研究[J]. 飞行力学, 2010, 28(3):24-27. ZHANG M, CHEN B, ZHANG Z L. Research on lateral landing control law of carrier-based aircraft[J]. Flight Dynamics, 2010, 28(3):24-27(in Chinese).
[95] HA C. Gain-scheduled directional guidance controller design using a genetic algorithm for automatic precision landing[J]. International Journal of Control, Automation and Systems, 2010, 8(1):107-117.
[96] LI J N, DUAN H B. Simplified brain storm optimization approach to control parameter optimization in F/A-18 automatic carrier landing system[J]. Aerospace Science and Technology, 2015, 42:187-195.
[97] STEINBERG M L, PAGET A B. A comparison of neural, fuzzy, evolutionary, and adaptive approaches for carrier landing[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2001:1-11.
[98] RICHARDS R A. Application of multiple artificial intelligence techniques for an aircraft carrier landing decision support tool[C]//Proceedings of the 2002 IEEE International Conference on Fuzzy Systems. Piscataway, NJ:IEEE Press, 2002:7-11.
[99] SURESH S, OMKAR S N, MANI V, et al. Direct adaptive neural flight controller for F-8 fighter aircraft[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2):454-464.
[100] CRASSIDIS J L, MOOK D J. Modeling an autopilot and thrust compensator in an automatic carrier landing system[C]//Proceedings of the AIAA Flight Simulation Technologies Conference. Reston:AIAA, 1991:368-377.
[101] 张玉洁, 杨一栋. 保持飞行迎角恒定的动力补偿系统性能分析[J]. 飞行力学, 2006, 24(4):30-33. ZHANG Y J, YANG Y D. Analysis of the approach power compensator system with constant angle of attack[J]. Flight Dynamics, 2006, 24(4):30-33(in Chinese).
[102] ZHU Q D, LI J L, LI Y Z, et al. The approach power compensation system of carrier aircraft[C]//Proceedings of 25th Chinese Control and Decision Conference. Piscataway, NJ:IEEE Press, 2013:5074-5076.
[103] ZHU Q D, WANG T, ZHANG W, et al. Variable structure approach power compensation system design of an automatic carrier landing system[C]//Proceedings of the 21st Chinese Control and Decision Conference. Piscataway, NJ:IEEE Press, 2009:5517-5521.
[104] 满翠芳, 江驹, 王新华, 等. 舰载机动力补偿系统模糊逻辑设计技术[J]. 南京航空航天大学学报, 2010, 42(5):656-660. MAN C F, JIANG J, WANG X H, et al. Carrier-based aircraft approach power compensator system design based on fuzzy logic techniques[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5):656-660(in Chinese).
[105] 朱齐丹, 李新飞, 吕开东. 基于滑模变结构控制的舰载机动力补偿系统设计[J]. 飞行力学, 2012, 30(3):223-227. ZHU Q D, LI X F, LYU K D. Approach power compensator system for carrier-based aircraft with variable structure control[J]. Flight Dynamics, 2012, 30(3):223-227(in Chinese).
[106] 李忠东. 自动油门控制技术在舰载机上的应用[J]. 飞机设计, 2012, 32(4):22-24. LI Z D. Application of automatic throttle control (ATC) technology in the carrier aircraft[J]. Aircraft Design, 2012, 32(4):22-24(in Chinese).
[107] 杨一栋, 江驹. 保持飞行迎角恒定的飞行/推力综合控制[J]. 航空学报, 1996, 17(4):460-464. YANG Y D, JIANG J. Integrated flight/thrust control system with constant angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(4):460-464(in Chinese).
[108] 杨一栋, 王新华, 龚华军. 飞行综合控制[M]. 北京:国防工业出版社, 2015. YANG Y D, WANG X H, GONG H J. Integrated flight control[M]. Beijing:National Defense Industry Press, 2015(in Chinese).
[109] 李冀鑫, 侯志强, 徐彦军. 基于总能量理论的着舰飞行/推力控制系统[J]. 飞行力学, 2010, 28(2):35-38. LI J X, HOU Z Q, XU Y J. Integrated carrier landing flight/thrust control system based on total energy theory[J]. Flight Dynamics, 2010, 28(2):35-38(in Chinese).
[110] Aircraft carrier reference data manual:NAEC-MISC-06900[R]. 1997.
[111] YIN H T, WANG X M, LI W C, et al. Study of disturbances model on carrier-based aircraft landing process[J]. Applied Mechanics and Materials, 2013, 321-324:824-828.
[112] 许东松, 刘星宇, 王立新. 航母运动对舰载飞机着舰安全性的影响[J]. 北京航空航天大学学报, 2011, 37(3):289-294. XU D S, LIU X Y, WANG L X. Influence of carrier motion on landing safety for carrier-based airplanes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3):289-294(in Chinese).
[113] SULEIMAN B M. Identification of finite-degree-of-freedom models for ship motions[D]. Virginia:Virginia Polytechnic Institute and State University, 2000:1-24.
[114] YUMORI I. Real time prediction of ship response to ocean waves using time series analysis[C]//Proceedings of OCEANS. Piscataway, NJ:IEEE Press, 1981:1082-1089.
[115] SIDAR M M, DOOLIN B F. On the feasibility of real-time prediction of aircraft carrier motion at sea[J]. IEEE Transactions on Automatic Control, 1983, 28(3):350-356.
[116] CORTES N B. Predicting ahead on ship motions using Kalman filter implementation[D]. Melbourne:RMIT University, 1999:20-50.
[117] KHAN A, BIL C, MARION K E. Ship motion prediction for launch and recovery of air vehicles[C]//Proceedings of MTS/IEEE OCEANS. Piscataway, NJ:IEEE Press, 2005:2795-2801.
[118] YANG X L, POTA H, GARRATT M, et al. Ship motion prediction for maritime flight operations[C]//Proceedings of the 17th IFAC World Congress. Laxenburg:International Federation of Automatic Control, 2008:12407-12412.
[119] 王敏, 张晶, 申功璋. 基于甲板运动预报的自动着舰系统综合设计[J]. 系统仿真学报, 2010, 22(S1):119-122. WANG M, ZHANG J, SHEN G Z. Design of automatic carrier landing system based on deck motion prediction[J]. Journal of System Simulation, 2010, 22(S1):119-122(in Chinese).
[120] 周鑫, 彭荣鲲, 袁锁中, 等. 舰载机着舰纵向甲板运动预估及补偿技术[J]. 南京航空航天大学学报, 2013, 45(5):599-604. ZHOU X, PENG R K, YUAN S Z, et al. Longitudinal deck motion prediction and compensation for carrier landing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(5):599-604(in Chinese).
[121] ZHAO X, XU R, KWAN C. Ship-motion prediction:Algorithms and simulation results[C]//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway, NJ:IEEE Press, 2004:125-128.
[122] 周鑫, 彭荣鲲, 袁锁中. 舰载机理想着舰点垂直运动的预估与补偿[J]. 航空学报, 2013, 34(7):1663-1669. ZHOU X, PENG R K, YUAN S Z. Prediction and compensation for vertical motion of ideal touchdown point in carrier landing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1663-1669(in Chinese).
[123] 余勇, 杨一栋. 侧向甲板运动补偿技术研究[J]. 航空学报, 2003, 24(3):69-71. YU Y, YANG Y D. Study on the lateral deck motion compensation technique[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3):69-71(in Chinese).
[124] 江驹, 王新华, 甄子洋, 等. 基于甲板运动补偿的舰载机自动着舰引导控制方法:ZL201110322181.6[P]. 2013-08-21. JIANG J, WANG X H, ZHEN Z Y, et al. Automatic carrier landing guidance control based on deck motion compensation for carrier-based aircraft:ZL201110322181.6[P]. 2013-08-21(in Chinese).
[125] JOURNÉE J M J. Theoretical manual of SEAWAY:Report1216a[R]. Delft:Delft University of Technology, 2001.
[126] 吕开东, 李新飞, 姜迈, 等. 舰载机着舰过程的舰尾气流场数值仿真分析[J]. 飞行力学, 2013, 31(1):18-23. LYU K D, LI X F, JIANG M, et al. Simulation analysis on carrier landing disturbance model[J]. Flight Dynamics, 31(1):18-23(in Chinese).
[127] POLSKY S, NAYLOR S. CVN airwake modeling and integration:initial steps in the creation and implementation of a virtual burble for F-18 carrier landing simulations[C]//Proceedings of AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston:AIAA, 2005:1-9.
[128] SHIPMAN J D, ARUNAJATESAN S, CAVALLO P A, et al. Dynamic CFD simulation of aircraft recovery to an aircraft carrier[C]//Proceedings of 26th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2008:1-11.
[129] URNES J M, HESS R K. Development of the F/A-18A automatic carrier landing system[J]. Journal of Guidance, Control, and Dynamics, 1985, 8(3):289-295.
[130] YIN H T, WANG X M, LI W C, et al. Study of disturbances model on carrier-based aircraft landing process[J]. Applied Mechanics and Materials, 2013, 321-324:824-828.
[131] 胡国才, 王奇, 刘湘一, 等. 舰尾流对舰载机着舰轨迹和动态响应的影响研究[J]. 飞行力学, 2009, 27(6):18-21. HU G C, WANG Q, LIU X Y, et al. Influence of carrier air wake on carrier-based aircraft landing trajectory and dynamic response[J]. Flight Dynamics, 2009, 27(6):18-21(in Chinese).
[132] 江驹, 甄子洋, 王新华, 等. 抑制舰尾气流扰动的舰载机着舰引导与控制系统及方法:ZL201110287699.0[P]. 2014-02-08. JIANG J, ZHEN Z Y, WANG X H, et al. Airwake disturbance rejection based carrier landing guidance and control system of carrier-based aircraft:ZL201110287699.0[P]. 2014-02-08(in Chinese).
[133] 焦鑫, 江驹, 王新华, 等. 基于模型参考模糊自适应的舰尾流抑制方法[J]. 南京航空航天大学学报, 2013, 45(3):396-401. JIAO X, JIANG J, WANG X H, et al. Air wake rejecting method based on model reference fuzzy adapting system control[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(3):396-401(in Chinese).
[134] 王奇, 吴文海, 胡国才. 抗尾流干扰的自动着舰非线性控制研究[J]. 飞行力学, 2013, 31(4):31-34. WANG Q, WU W H, HU G C. Research on nonlinear control of automated carrier landing with the airwake rejection ability[J]. Flight Dynamics, 2013, 31(4):31-34(in Chinese).
[135] 甄子洋, 邵敏敏, 龚华军, 等. 一种含舰尾气流补偿的舰载机自动着舰复合控制方法:CN201510243842.4[P]. 2015-05-13. ZHEN Z Y, SHAO M M, GONG H J. Airwake compensation based automatic carrier landing composite control for carrier-based aircraft:CN201510243842.4[P]. 2015-05-13(in Chinese).
[136] 郑峰婴, 杨一栋. 变后掠翼舰载机抗侧风自动着舰引导系统[J]. 飞行力学, 2011, 29(2):37-40. ZHENG F Y, YANG Y D. Counteracting side wind in automatic carrier landing system for variable swept wing carrier-aircraft[J]. Flight Dynamics, 2011, 29(2):37-40(in Chinese).
[137] MOOK D J, SWANSON D A, ROEMER M J, et al. Improved noise rejection in automatic carrier landing systems[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(2):509-519.
[138] CRASSIDIS J L, MOOK D J, MCGRATH J M. Automatic carrier landing system utilizing aircraft sensors[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(5):914-921.
[139] 桑德一, 赵建军, 杨利斌. 舰载机着舰引导雷达标校数据去噪方法研究[J]. 计算机与数字工程, 2015, 43(3):387-391. SANG D Y, ZHAO J J, YANG L B. Denoising method for landing guidance radar calibration data[J]. Computer and Digital Engineering, 2015, 43(3):387-391(in Chinese).
[140] 余勇, 杨一栋, 代世俊. 舰载飞机复飞决策技术研究与实时可视化仿真[J]. 飞行力学, 2002, 20(2):31-38. YU Y, YANG Y D, DAI S J. Study on wave off decision techniques and real-time visible simulation of carrier-based aircraft[J]. Flight Dynamics, 2002, 20(2):31-38(in Chinese).
[141] 焦鑫, 江驹, 王新华, 等. 舰载机综合复飞决策研究[J]. 飞行力学, 2012, 30(5):405-409. JIAO X, JIANG J, WANG X H, et al. Research on comprehensive wave-off decision of carrier-based aircraft[J]. Flight Dynamics, 2012, 30(5):405-409(in Chinese).
[142] HAN Z M, HONG G X. Analysis of security window in automatic landing of the carrier-borne aircraft[J]. Research Journal of Applied Sciences, Engineering and Technology, 2014, 7(14):2874-2879.
[143] 沈宏良, 龚正. 舰载飞机复飞决策与操纵研究[J]. 飞行力学, 2008, 26(5):5-9. SHEN H L, GONG Z. Research on wave-off decision and control for carrier aircraft[J]. Flight Dynamics, 2008, 26(5):5-9(in Chinese).
[144] 王宝宝, 龚华军, 王新华, 等. 舰载机智能复飞决策技术研究[J]. 飞行力学, 2010, 28(2):42-45. WANG B B, GONG H J, WANG X H, et al. Study on intelligent wave-off decision techniques of carrier aircraft[J]. Flight Dynamics, 2010, 28(2):42-45(in Chinese).
[145] 杨一栋, 江驹, 张洪涛, 等. 着舰安全与复飞技术[M]. 北京:国防工业出版社, 2013. YANG Y D, JIANG J, ZHANG H T, et al. Safety and waveoff technologies in carrier landing[M]. Beijing:National Defense Industry Press, 2013(in Chinese).
[146] NORWOOD D S, CHICHESTER R H. Full scale aircraft drop test program for the F-35C carrier variant[C]//Proceedings of 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2015:1-22.
[147] 杨一栋, 袁锁中, 王夷. 无人直升机着舰制导与控制[M]. 北京:国防工业出版社, 2013. YANG Y D, YUAN S Z, WANG Y. Guidance and control of unmanned helicopter ship landing[M]. Beijing:National Defense Industry Press, 2013(in Chinese). |