Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (22): 331998.doi: 10.7527/S1000-6893.2025.31998
• Electronics and Electrical Engineering and Control • Previous Articles
Jinlun ZHOU, Honghai ZHANG(
), Wenqing LI
Received:2025-03-19
Revised:2025-04-15
Accepted:2025-05-19
Online:2025-06-03
Published:2025-05-30
Contact:
Honghai ZHANG
E-mail:honghaizhang@nuaa.edu.cn
Supported by:CLC Number:
Jinlun ZHOU, Honghai ZHANG, Wenqing LI. Key technologies and deployment routes for advancing autonomous operations in civil aviation[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(22): 331998.
Table 1
Summary of references
| 领域与要素 | 贡献/技术概要 | 文献 | 所属机构(年份) | |
|---|---|---|---|---|
自主运行 概念体系 | 首次提出“自由飞行”运行理念 | 在航空器具备自主通信、导航能力前提下,飞行员可以选择合适的航迹实施飞行任务 | [ | 美国航空无线电 技术委员会 (1995) |
发布美国《国家航路 程序》 | 在高度层FL390以上,离机场370 km以外的空域允许航空公司自行决定航路并递交飞行计划,地面管制仅对航路上的飞机实施监视和必要的干预 | [ | 美国联邦航空局 (1995) | |
提出“自由航路空域” 概念 | 放松部分欧洲空域内民航空中交通管制,允许航空公司/飞行员在特定空域内自主选择飞行路线 | [ | 欧洲航行安全 组织(2001) | |
| 设计“自由飞行”的安全空中交通管理运行概念 | 提出了自由飞行场景下的空中交通管理与人为因素安全运行保障流程设计及其验证方法 | [ | 荷兰国家航空航天实验室(2002) | |
提出“基于航迹运行 概念” | 提出以飞行全过程精细四维航迹为核心进行信息交互,形成多方一致态势认知并进行各类协同决策 | [ | 国际民航组织 (2005) | |
| 提出中国民航TBO实施进程与改革方案 | 针对中国民航运行发展现状,诠释了TBO的运行内涵与发展需求,制定了空管、航司、机场多方协同的TBO发展路线 | [ | 中国民用航空局 (2020) | |
世界空管 运行改革 趋势 | 提出“ASBU”航空运输系统组块升级计划 | 定义一系列航空运输升级区块,每个区块代表着相应技术、程序和管理方面的升级,分多个阶段逐步引入新技术与新运行理念,推动空中交通管理的智能化和全球协调 | [ | 国际民航组织 (2012) |
| 提出中国民航空管现代化战略 | 围绕ASBU主线,引入先进的技术和管理手段,建设更加智能化、自动化、高效、安全、环保的空中交通管理体系,以支持中国民航事业的长远发展 | [ | 中国民用航空局 (2016) | |
提出中国“四强空管” 战略 | 系统性提出“四强空管”战略,明确“强安全”“强效率”“强智慧”“强协同”的中国空管目标导向与发展规划 | [ | 中国民用航空局 (2018) | |
| 提出“十四五”民用航空发展规划 | 中国在“十四五”规划(2021-2025)期间,推动中国民用航空事业的高质量发展,进一步提升航空运输的服务能力、创新能力、安全性及可持续发展能力 | [ | 中国民用航空局 (2021) | |
| 提出较完善的“自由航路空域”运行概念以及实施规划方案 | 于1999年首次提出《单一欧洲天空》SESAR计划,并于2024年7月发布最新《自由航路空域实施计划进程表》,计划于2030年前全面完成欧洲空域范围内传统管制空域到自由航路空域改革 | [ | 欧洲航行安全 组织(2024) | |
| 发布更为完善的“Next Gen”美国国家空域系统升级计划 | 2004年FAA首次提出《新一代航空运输系统计划》(Next Gen),并于2025年1月发布其最新版本。Next Gen旨在通过先进的通信导航监视技术和空管系统改善美国的空域运行效率和安全性,其近期发布版本强调了对“基于航迹运行”的应用实施 | [ | 美国联邦航空局 (2025) | |
| 制定欧洲FRA实施的具体阶段步骤 | 计划按照“明确需求效益”“空域规划管理”“运行文件公开”“周期迭代优化”四步走实施欧洲自由航路空域改革 | [ | 欧洲航行安全 组织(2024) | |
推进自主 运行相关 支持技术 | 空域态势感知 | 基于脑电图分析管制员工作负荷并结合空中交通管制运行环境分析各种场景下的安全态势 | [ | 香港理工大学 (2023) |
| 空域态势感知 | 采用控制意图理解(CIU)和飞行轨迹预测(FTP)方法分析空中交通管制过程中的综合运行态势 | [ | 四川大学(2024) | |
| 自主运行航空器安全间隔保持 | 提出航空器在自主运行模式下的安全间隔保持方法,在保障安全运行同时提升空域使用效率 | [ | 北京航空航天 大学(2022) | |
| 航空器航迹规划(启发式算法) | 提出一种在基于四维航迹运行模式下,考虑航迹意图与航迹不确定性的冲突解脱算法 | [ | 哈尔滨工业大学 (2018) | |
航空器航迹规划 (人工智能) | 采用深度强化学习架构解决动态气象规避区环境以及多航空器实时冲突解脱问题 | [ | 南京航空航天 大学(2024) | |
| 基于动力学模型的飞行控制 | 提出航空器姿态保持技术,在传感器部分失效的情况下依然能够进行安全的运行姿态保持 | [ | 代尔夫特理工 大学(2022) | |
基于人机交互的 自主引导控制 | 提出一种决策支持系统,为空管人员和飞行员应对繁重的工作负荷和复杂的空域情况时提供可靠的决策支持 | [ | 西英格兰大学 (2024) | |
| 自主安全间隔保持 | 提出基于深度强化学习模型的空域航空器协同冲突解脱与安全间隔保持方法 | [ | 北京航空航天 大学(2021) | |
| 自主安全间隔保持 | 提出一种基于MPC的随机风场下航空器纵向自主间隔控制方法 | [ | 南京航空航天 大学(2024) | |
自主运行 系统部署 方案 | 自主运行相关 硬件支持系统 | 提出针对民用飞机自主运行功能的硬件适配方案,及其对应装置、计算机设备及存储介质 | [ | 中国商用飞机 有限责任公司 (2023) |
自主运行相关 软件支持系统 | 提出一种空管广域信息管理系统体系结构设计方案 | [ | 中国民航大学 (2022) | |
自主运行 管理流程 设计 | 基于四维航迹的 空地协商决策 | 提出一种自主运行模式下四维航迹空地协商决策流程设计方案 | [ | 中国航空无线电 电子研究所 (2018) |
自主运行模式 空地协商决策 | 提出一种面向航空器自主运行的空地四维航迹协商系统架构 | [ | 中国电子科技 集团第二十八 研究所(2024) | |
| [1] | 中国民用航空局. 2023年民航行业发展统计公报[EB/OL]. (2024-05-31)[2025-03-20]. [2025-03-20]. (in Chinese). |
| [2] | 中华人民共和国中央人民政府. 运输航空公司、机场疫情防控技术指南(第十版)[EB/OL]. (2023-01-06)[2025-03-20]. . |
| People’s Government of China. Technical guidelines for epidemic prevention and control of transport airlines and airports (10th edition) [EB/OL]. (2023-01-06)[2025-03-20]. (in Chinese). | |
| [3] | 中国民用航空局. 关于印发对新型冠状病毒感染实施“乙类乙管”总体方案的通知[EB/OL]. (2022-12-18)[2025-03-20]. . |
| Civil Aviation Administration of China. Notice on printing the plan of “class B and class B control” for COVID-19[EB/OL]. (2022-12-18)[2025-03-20]. (in Chinese). | |
| [4] | 中国民用航空局. 中国民航 2024年12月份主要生产指标统计[EB/OL]. (2025-01-31)[2025-03-20]. . |
| Aviation Administration of China. Statistics of m civil production major indicators of China civil aviation in December 2024. (2025-01-31)[2025-03-20]. (in Chinese). | |
| [5] | 中国民用航空局. 中国民航 2019年7月份主要生产指标统计[EB/OL]. (2019-09-12)[2025-03-19]. . |
| Aviation Administration of China. Statistics of m civil production major indicators of China civil aviation in July 2019. (2019-09-12)[2025-03-19]. (in Chinese). | |
| [6] | 冯正霖. 推进民航治理体系和治理能力现代化 为新时代民航强国建设提供制度保障[J]. 民航管理, 2020(1): 6-15. |
| FENG Z L. Advancing modernization in civil aviation governance system and governance capability, providing system guarantee for the construction of a strong civil aviation country in the new era[J]. Civil Aviation Management, 2020(1): 6-15 (in Chinese). | |
| [7] | 王红勇, 黄佳文, 姜高扬, 等. 基于空中交通复杂度的大规模航迹优化[J/OL]. 北京航空航天大学学报, (2024-06-19)[2025-08-12]. . |
| WANG H Y, HUANG J W, JIANG G Y, et al. Large-scale trajectory optimization based on air traffic complexity[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2024-06-19) [2025-08-12]. (in Chinese). | |
| [8] | SU J B, WU H J, TSUI K W H, et al. Aviation resilience during the COVID-19 pandemic: A case study of the European aviation market[J]. Transportation Research Part A: Policy and Practice, 2023, 177: 103835. |
| [9] | FU X W, LEI Z, WANG K, et al. Low cost carrier competition and route entry in an emerging but regulated aviation market-The case of China[J]. Transportation Research Part A: Policy and Practice, 2015, 79: 3-16. |
| [10] | 张军. 现代空中交通管理[M]. 北京: 北京航空航天大学出版社, 2005: 2-24. |
| ZHANG J. Modern air traffic management [M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2005: 2-24 (in Chinese). | |
| [11] | 陈志杰. 空域管理理论与方法[M]. 北京: 科学出版社, 2012: 4-9. |
| CHEN Z J. Theory and method of airspace management[M]. Beijing: Science Press, 2012: 4-9 (in Chinese). | |
| [12] | 陈志杰. 未来空中交通管制系统发展面临的技术挑战[J]. 指挥信息系统与技术, 2016, 7(6): 1-5. |
| CHEN Z J. Technological challenges of future air traffic control system development[J]. Command Information System and Technology, 2016, 7(6): 1-5 (in Chinese). | |
| [13] | European Union Aviation Safety Agency (EASA). Single European Sky[EB/OL]. (2020-03-10)[2025-03-19]. . |
| [14] | International Civil Aviation Organization (ICAO). Global air navigation plan for CNS/ATM systems (Doc.9750)[EB/OL]. (2020-12-12)[2025-03-22]. . |
| [15] | 中国民用航空局. 中国民航航空系统组块升级(ASBU)发展与实施策略[EB/OL]. (2015-11-15)[2025-03-19]. . |
| Civil Aviation Administration of China. Development and implementation strategy of Chinese civil aviation system block upgrade (ASBU) [EB/OL]. (2015-11-15)[2025-03-19]. (in Chinese). | |
| [16] | 高俊. 新时代“四强空管”建设[M]. 北京: 中国民航出版社, 2023: 11-65. |
| GAO J. Construction of “four-pronged air traffic control” in the new era[M]. Beijing: Chinese Civil Aviation Press, 2023: 11-65 (in Chinese). | |
| [17] | 中国民用航空局. 冯正霖: 以“四强空管”为总目标深入推进空管改革. (2018-03-15)[2025-04-23]. . |
| Aviation Administration of China. Promote air traffic control reform with the overall goal of “Four-pronged air traffic control”[EB/OL]. (2018-03-15)[2025-04-23]. (in Chinese). | |
| [18] | 中国民用航空局. “十四五” 民用航空发展规划[EB/OL]. (2021-12-24)[2025-03-22]. . |
| Civil Aviation Administration of China. 14th five year plan for the development of civil aviation[EB/OL]. (2021-12-24)[2025-03-22]. (in Chinese). | |
| [19] | PANG Y T, HU J M, LIEBER C S, et al. Air traffic controller workload level prediction using conformalized dynamical graph learning[J]. Advanced Engineering Informatics, 2023, 57: 102113. |
| [20] | BALTA E, PSARRAKIS A, VATAKIS A. The effects of increased mental workload of air traffic controllers on time perception: Behavioral and physiological evidence[J]. Applied Ergonomics, 2024, 115: 104162. |
| [21] | 蔡开泉, 赵鹏. 空中交通自主间隔管控技术研究[J]. 南京航空航天大学学报, 2022, 54(4): 688-699. |
| CAI K Q, ZHAO P. Key technologies on air traffic self-separation management[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(4): 688-699 (in Chinese). | |
| [22] | National Aeronautics and Space Administration (NASA). Towards autonomous aviation operations: What can we learn from other areas of automation[EB/OL]. (2016-06-13)[2025-03-19]. . |
| [23] | Radio technical commission for aeronautics (RTCA). Task force 3 final report on free flight implementation[EB/OL]. (1995-12-26)[2025-03-15]. . |
| [24] | HOEKSTRA J M, VAN GENT R N H W, RUIGROK R C J. Designing for safety: The ‘free flight’ air traffic management concept[J]. Reliability Engineering & System Safety, 2002, 75(2): 215-232. |
| [25] | Federal Aviation Administration (FAA). North American route program[EB/OL]. (2004-07-21)[2025-03-01]. . |
| [26] | Eurocontrol. Free route through the use of direct routing for flights both in cruise and vertically evolving for cross ACC/FIR borders and in high complexity [EB/OL]. (2016-07-02)[2025-03-17]. . |
| [27] | Eurocontrol. Free route airspace (FRA) implementation projection charts[EB/OL]. (2025-02-06)[2025-03-18]. . |
| [28] | Eurocontrol. European airspace design methodology guidelines-general principles and technical specifications for airspace design [EB/OL]. (2024-11-26)[2025-04-21]. . |
| [29] | International Civil Aviation Organization (ICAO). Global air traffic management operational concept (Doc.9854)[EB/OL]. (2012-11-16)[2025-03-18]. . |
| [30] | 中国民用航空局空中交通管理局. 中国民航空管基于航迹运行(TBO)运行概念 [EB/OL]. (2020-05-28)[2025-04-21]. . |
| Air Traffic Management Bureau, CAAC. Trajectory-based operation (TBO) of civil aviation air traffic control in China. [EB/OL]. (2020-05-28)[2025-04-21]. (in Chinese). | |
| [31] | LOVE J, GRONAU Q F, PALMER G, et al. In human-machine trust, humans rely on a simple averaging strategy[J]. Cognitive Research, 2024, 9(1): 58. |
| [32] | LEE J, ABE G, SATO K, et al. Developing human-machine trust: Impacts of prior instruction and automation failure on driver trust in partially automated vehicles[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 81: 384-395. |
| [33] | JUNG E S, DONG S Y, LEE S Y. Neural correlates of variations in human trust in human-like machines during non-reciprocal interactions[J]. Scientific Reports, 2019, 9: 9975. |
| [34] | GULATI S, MCDONAGH J, SOUSA S, et al. Trust models and theories in human-computer interaction: A systematic literature review[J]. Computers in Human Behavior Reports, 2024, 16: 100495. |
| [35] | GEBRU B, ZELEKE L, BLANKSON D, et al. A review on human-machine trust evaluation: Human-centric and machine-centric perspectives[J]. IEEE Transactions on Human-Machine Systems, 2022, 52(5): 952-962. |
| [36] | WELSCH T, TEMME M M. Airspace structure study with capacity compensation for increasing diverse operations[J]. Aerospace, 2025, 12(3): 227. |
| [37] | CESTINO E, ROMEO G, PIANA P, et al. Numerical/experimental evaluation of buckling behaviour and residual tensile strength of composite aerospace structures after low velocity impact[J]. Aerospace Science and Technology, 2016, 54: 1-9. |
| [38] | National Aeronautics and Space Administration (NASA). Pathfinding for airspace with autonomous vehicles[EB/OL]. (2025-03-11)[2025-03-19]. . |
| [39] | Federal Aviation Administration (FAA). Reduced vertical separation minimum (RVSM)[EB/OL]. (2022-09-20)[2025-03-11]. . |
| [40] | YANG L, HUANG J, GAO Q, et al. Dynamic boundary optimization of free route airspace sectors[J]. Aerospace, 2022, 9(12): 832. |
| [41] | GERDES I, TEMME A, SCHULTZ M. From free-route air traffic to an adapted dynamic main-flow system[J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102633. |
| [42] | 朱承元, 田睿. 考虑管制员负荷的空中交通流量动态短期预测[J]. 飞行力学, 2024, 42(2): 82-88, 94. |
| ZHU C Y, TIAN R. Dynamics short-term prediction of air traffic flow considering controller workload[J]. Flight Dynamics, 2024, 42(2): 82-88, 94 (in Chinese). | |
| [43] | 王永刚, 王慧莹. 技能自评在管制员工作负荷压力与认知能力间的调节效应分析[J]. 中国安全生产科学技术, 2023, 19(4): 49-55. |
| WANG Y G, WANG H Y. Analysis on moderating effect of skills self-assessment on relationship between workload pressure and cognitive ability of air traffic controllers[J]. Journal of Safety Science and Technology, 2023, 19(4): 49-55 (in Chinese). | |
| [44] | 胡明华, 陈丹. 空中交通管制员工作负荷规律[J]. 指挥信息系统与技术, 2018, 9(3): 1-7. |
| HU M H, CHEN D. Characteristics of air traffic controller’s workload[J]. Command Information System and Technology, 2018, 9(3): 1-7 (in Chinese). | |
| [45] | 李慧, 朱培, 邵荃, 等. 基于决策树模型的管制员工作负荷检测[J]. 科学技术与工程, 2024, 24(20): 8790-8796. |
| LI H, ZHU P, SHAO Q, et al. Controller workload detection based on decision tree model[J]. Science Technology and Engineering, 2024, 24(20): 8790-8796 (in Chinese). | |
| [46] | 赵嶷飞, 肖瞳瞳, 万俊强. 中国民航空中交通管制体制演化[J]. 交通运输工程学报, 2020, 20(2): 100-120. |
| ZHAO Y F, XIAO T T, WAN J Q. Evolution of air traffic control system of Chinese civil aviation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 100-120 (in Chinese). | |
| [47] | Federal Aviation Administration (FAA). System wide information management (SWIM)[EB/OL]. (2024-05-28)[2025-03-17]. . |
| [48] | Eurocontrol. Airport collaborative decision-making (A-CDM)[EB/OL]. (2017-03-31)[2025-03-17]. . |
| [49] | LI Q B, NG K K H, YU S C M, et al. Recognising situation awareness associated with different workloads using EEG and eye-tracking features in air traffic control tasks[J]. Knowledge-Based Systems, 2023, 260: 110179. |
| [50] | GUO D Y, ZHANG J W, YANG B, et al. Multi-modal intelligent situation awareness in real-time air traffic control: Control intent understanding and flight trajectory prediction[J]. Chinese Journal of Aeronautics, 2025, 38(6): 103376. |
| [51] | CHI Y W, NIE J X, ZHONG L Z, et al. A review of situational awareness in air traffic control[J]. IEEE Access, 2023, 11: 134040-134057. |
| [52] | Eurocontrol. User manual for the base of aircraft data (BADA) [EB/OL] (2004-07-01)[2025-05-01]. . |
| [53] | ZHOU J L, ZHANG H H, WANG Y F, et al. Multiobjective four-dimensional trajectory synergetic optimization based on congestion prediction and NSGA3-SA[J]. IEEE Access, 2022, 10: 71986-72005. |
| [54] | TAYE A G, VALENTI R, RAJHANS A, et al. Safe and scalable real-time trajectory planning framework for urban air mobility[J]. Journal of Aerospace Information Systems, 2024: 1-10. |
| [55] | ZHOU Y, HU M H, YANG L, et al. Autonomous and collaborative trajectory planning for traffic complexity management[J]. IET Intelligent Transport Systems, 2023, 17(5): 992-1008. |
| [56] | TAFUR C L, CAMERO R G, RODRÍGUEZ D A, et al. Applications of artificial intelligence in air operations: A systematic review[J]. Results in Engineering, 2025, 25: 103742. |
| [57] | ZHANG H H, ZHOU J L, SHI Z B, et al. DDQNC-P: A framework for civil aircraft tactical synergetic trajectory planning under adverse weather conditions[J]. Chinese Journal of Aeronautics, 2024, 37(12): 434-457. |
| [58] | MATSUNO Y, TSUCHIYA T, WEI J, et al. Stochastic optimal control for aircraft conflict resolution under wind uncertainty[J]. Aerospace Science and Technology, 2015, 43: 77-88. |
| [59] | LIU W Y, HWANG I. Probabilistic aircraft midair conflict resolution using stochastic optimal control[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 37-46. |
| [60] | HAO S Q, CHENG S W, ZHANG Y P. A multi-aircraft conflict detection and resolution method for 4-dimensional trajectory-based operation[J]. Chinese Journal of Aeronautics, 2018, 31(7): 1579-1593. |
| [61] | ZHOU J L, ZHANG H H, XUE Q W, et al. Real-time 4D trajectory planning method for civil aircraft with high security in congested, stochastic, and dynamic airspace environment[J]. Expert Systems with Applications, 2025, 260: 125347. |
| [62] | SUI D, XU W P, ZHANG K. Study on the resolution of multi-aircraft flight conflicts based on an IDQN[J]. Chinese Journal of Aeronautics, 2022, 35(2): 195-213. |
| [63] | PHAM D T, TRAN P N, ALAM S, et al. Deep reinforcement learning based path stretch vector resolution in dense traffic with uncertainties[J]. Transportation Research Part C: Emerging Technologies, 2022, 135: 103463. |
| [64] | CHEN Y T, HU M H, YANG L, et al. General multi-agent reinforcement learning integrating adaptive manoeuvre strategy for real-time multi-aircraft conflict resolution[J]. Transportation Research Part C: Emerging Technologies, 2023, 151: 104125. |
| [65] | International Civil Aviation Organization (ICAO). Air traffic management (Doc.4444)[EB/OL]. (2017-11-22)[2025-03-22]. . |
| [66] | SADRAEY M. Automatic flight control systems[M]. Cham: Springer International Publishing, 2020: 68-154. |
| [67] | DE CROON G C H E, DUPEYROUX J J G, DE WAGTER C, et al. Accommodating unobservability to control flight attitude with optic flow[J]. Nature, 2022, 610(7932): 485-490. |
| [68] | GONG X, ZASECK K, KOLMANOVSKY I, et al. Dual-loop control of free piston engine generator[J]. IFAC-PapersOnLine, 2015, 48(15): 174-180. |
| [69] | WOO J W, AN J Y, CHO M G, et al. Integration of path planning, trajectory generation and trajectory tracking control for aircraft mission autonomy[J]. Aerospace Science and Technology, 2021, 118: 107014. |
| [70] | CAO C Y, LI F B, DING R, et al. Intelligent attitude control for morphing flight vehicle: A deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2025, 74(6): 8851-8865. |
| [71] | YAN X H, CAI B G, NING B, et al. Moving horizon optimization of dynamic trajectory planning for high-speed train operation[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5): 1258-1270. |
| [72] | INSAURRALDE C C, BLASCH E. Ontological airspace-situation awareness for decision system support[J]. Aerospace, 2024, 11(11): 942. |
| [73] | 熊端琴, 姚乃明, 林榕, 等. 面向飞行交互任务的三种人机交互方式效率比较研究[J]. 航天医学与医学工程, 2024, 37(3): 156-161. |
| XIONG D Q, YAO N M, LIN R, et al. A comparative study on the efficiency of three human-computer interaction modes for flight interaction tasks[J]. Space Medicine & Medical Engineering, 2024, 37(3): 156-161 (in Chinese). | |
| [74] | 刘威, 杨家忠. 民用飞机驾驶舱新型人机交互方式综述[J]. 人类工效学, 2024, 30(3): 81-86. |
| LIU W, YANG J Z. Summary of new man-machine interaction mode in civil aircraft cockpit[J]. Chinese Journal of Ergonomics, 2024, 30(3): 81-86 (in Chinese). | |
| [75] | CAMBRIA E, SCHULLER B, XIA Y Q, et al. New avenues in knowledge bases for natural language processing[J]. Knowledge-Based Systems, 2016, 108(C): 1-4. |
| [76] | ZHOU J L, ZHANG H H, LIU Y Y, et al. Trustworthy flight guidance method for civil aircraft autonomous operation based on 4D trajectory-a case study of COMAC C919[J]. Aerospace Science and Technology, 2025, 167: 110641. |
| [77] | 卢飞. 飞行间隔安全评估模型及应用研究[D]. 天津: 中国民航大学, 2023: 98-118. |
| LU F. Study on the model and application of flight separation safety assessment[D]. Tianjin: Civil Aviation University of China, 2023: 98-118 (in Chinese). | |
| [78] | SUN M H, RAND K, FLEMING C. 4 dimensional waypoint generation for conflict-free trajectory based operation[J]. Aerospace Science and Technology, 2019, 88: 350-361. |
| [79] | BRITTAIN M, WEI P. Scalable autonomous separation assurance with heterogeneous multi-agent reinforcement learning[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(4): 2837-2848. |
| [80] | ZHAO P, LIU Y M. Physics informed deep reinforcement learning for aircraft conflict resolution[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8288-8301. |
| [81] | 李岱潍, 汤新民, 陆晓娜, 等. 基于冲突点到达时间的航空器自主间隔控制律[J]. 系统工程与电子技术, 2024, 46(10): 3484-3491. |
| LI D W, TANG X M, LU X N, et al. Aircraft autonomous separation control based on time-to-go of conflict point[J]. Systems Engineering and Electronics, 2024, 46(10): 3484-3491 (in Chinese). | |
| [82] | 郑鹏程. 基于分布式决策的航空器自主间隔控制研究[D]. 南京: 南京航空航天大学, 2022: 22-35. |
| ZHENG P C. Research on aircraft autonomous separation control based on distributed decision[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022: 22-35 (in Chinese). | |
| [83] | 李岱潍. 基于ADS-B IN的航空器自主间隔控制研究[D]. 南京: 南京航空航天大学, 2023: 29-45. |
| LI D W. Research on aircraft autonomous separation control based on ADS-B IN [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023: 29-45 (in Chinese). | |
| [84] | 汤新民, 陆晓娜. 基于MPC的随机风场下航空器纵向自主间隔控制[J/OL]. 北京航空航天大学学报, (2023-10-24)[2025-08-12]. . |
| TANG X M, LU X N. Longitudinal autonomous separation control of aircraft in random wind fields based on MPC[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2023-10-24) [2025-08-12]. (in Chinese). | |
| [85] | WANG S J, CAO X, LI H Y, et al. Air route network optimization in fragmented airspace based on cellular automata[J]. Chinese Journal of Aeronautics, 2017, 30(3): 1184-1195. |
| [86] | SAUER M, STEINER M, SHARMAN R D, et al. Tradeoffs for routing flights in view of multiple weather hazards[J]. Journal of Air Transportation, 2019, 27(2): 70-80. |
| [87] | 陈雨童, 胡明华, 杨磊, 等. 受限航路空域自主航迹规划与冲突管理技术[J]. 航空学报, 2020, 41(9): 324045. |
| CHEN Y T, HU M H, YANG L, et al. Autonomous trajectory planning and conflict management technology in restricted airspace[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 324045 (in Chinese). | |
| [88] | 郭水林. 规避危险气象的实时航迹优化研究[D]. 天津: 中国民航大学, 2021: 8-34. |
| GUO S L. Research on optimization of real time flight path for avoiding hazardous weather[D]. Tianjin: Civil Aviation University of China, 2021: 8-34 (in Chinese). | |
| [89] | 马赵飞. 考虑冲突解脱的动态恶劣天气下改航路径规划[D]. 天津: 中国民航大学, 2023. |
| MA Z F. Diversion route planning under dynamic adverse weather considering conflict relief [D]. Tianjin: Civil Aviation University of China, 2023 (in Chinese). | |
| [90] | GAO Z W, CECATI C, DING S X. A survey of fault diagnosis and fault-tolerant techniques—part Ⅰ: Fault diagnosis with model-based and signal-based approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757-3767. |
| [91] | BIENIEK D, LUCKNER R, DE VISSCHER I, et al. Simulation methods for aircraft encounters with deformed wake vortices[J]. Journal of Aircraft, 2016, 53(6): 1581-1596. |
| [92] | SUN J M, LI H M. Abnormal flight passenger recovery algorithm based on itinerary acceptance[J]. Journal of Computer and Communications, 2023, 11(11): 167-182. |
| [93] | LIU H, SUN F, ZHANG Y. An air-rail inter-modal strategy for aircraft recovery[J]. Chinese Journal of Aeronautics, 2022, 35(6): 240-249. |
| [94] | SANTANA M, DE LA VEGA J, MORABITO R, et al. The aircraft recovery problem: A systematic literature review[J]. EURO Journal on Transportation and Logistics, 2023, 12: 100117. |
| [95] | LANG X B, CEN F, LI Q F, et al. Deep reinforcement learning-based upset recovery control for generic transport aircraft[J]. Aerospace Systems, 2022, 5(4): 625-634. |
| [96] | TANG X M, LU X N, ZHENG P C. Aircraft autonomous separation assurance based on cooperative game theory[J]. Aerospace, 2022, 9(8): 421. |
| [97] | 王兴隆, 王友杰. 民航飞联网智慧运行关键技术及典型应用[J]. 信息通信技术, 2023, 17(5): 45-53. |
| WANG X L, WANG Y J. Key technologies and typical applications of intelligent operation of civil aviation Internet of aircrafts[J]. Information and Communications Technologies, 2023, 17(5): 45-53 (in Chinese). | |
| [98] | TANG J, LIU G, PAN Q T. Review on artificial intelligence techniques for improving representative air traffic management capability[J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1123-1134. |
| [99] | 武仲芝, 郭玮, 王晓丽. 民用飞机功能的建模方法、装置、计算机设备及存储介质: CN116227218A[P]. 2023-06-06. |
| WU Z Z, GUO W, WANG X L. Civil aircraft function modeling method and device, computer equipment and storage medium: CN116227218A[P]. 2023-06-06 (in Chinese). | |
| [100] | 张小舟, 杨柳青. 一种新型民航机载双通道甚高频接收机及通信系统: CN114039611A[P]. 2022-02-11. |
| ZHANG X Z, YANG L Q. Novel civil aviation airborne dual-channel very high frequency receiver and communication system: CN114039611A[P]. 2022-02-11 (in Chinese). | |
| [101] | 郑凯中, 王瑞辉, 陈伟, 等. 一种民航机载终端数据传输方法、装置、设备及存储介质: CN118972074A[P]. 2024-11-15. |
| ZHENG K Z, WANG R H, CHEN W, et al. Civil aviation airborne terminal data transmission method, device and equipment and storage medium: CN118972074A[P]. 2024-11-15 (in Chinese). | |
| [102] | 陈建明. 新型应答器场景应用及飞行器地面引导运行的方法和系统: CN119239710A[P]. 2025-01-03. |
| CHEN J M. Novel transponder scene application and aircraft ground guide operation method and system: CN119239710A[P]. 2025-01-03 (in Chinese). | |
| [103] | 吴志军, 刘亮. 广域信息管理系统体系结构: CN118212810A[P]. 2024-06-18. |
| WU Z J, LIU L. Wide area information management system architecture: CN118212810A[P]. 2024-06-18 (in Chinese). | |
| [104] | 王中叶, 张世佳, 张洪海, 等. 一种基于LSTM-DNN混合神经网络的航空器轨迹预测方法: CN116822738A[P]. 2023-09-29. |
| WANG Z Y, ZHANG S J, ZHANG H H, et al. Aircraft trajectory prediction method based on LSTM-DNN hybrid neural network: CN116822738A[P]. 2023-09-29 (in Chinese). | |
| [105] | 杨磊, 张昊然, 陈雨童, 等. 一种基于可达时空域的无冲突航迹规划方法、装置及系统: CN111402637A[P]. 2020-07-10. |
| YANG L, ZHANG H R, CHEN Y T, et al. Conflict-free flight trajectory planning method, device and system based on reachable time-space domain: CN111402637A[P]. 2020-07-10 (in Chinese). | |
| [106] | 张洪海, 宁常远, 周锦伦, 等. 一种基于航空器四维航迹产生可信引导指令的方法: CN118571078A[P]. 2024-08-30. |
| ZHANG H H, NING C Y, ZHOU J L, et al. Method for generating trustworthy flight guidance instruction based on the four-dimensional trajectory of aircraft: CN118571078A[P]. 2024-08-30 (in Chinese). | |
| [107] | 张洪海, 唐思嘉, 瞿昕宜, 等. 一种面向三区侵入和航空器对冲突的航空器风险识别方法: CN118486199A[P]. 2024-08-13. |
| ZHANG H H, TANG S J, QU X Y, et al. Aircraft risk identification method for three-area intrusion and aircraft pair conflicts: CN118486199A[P]. 2024-08-13 (in Chinese). | |
| [108] | 张洪海, 吕文颖, 万俊强, 等. 空中交通风险热点识别方法、关键航空器识别方法及系统: CN114124461A[P]. 2022-03-01. |
| ZHANG H H, LYU W Y, WAN J Q, et al. Air traffic risk hotspot identification method, key aircraft identification method and system: CN114124461A[P]. 2022-03-01 (in Chinese). | |
| [109] | MENENDEZ X P, CODINA R D, VERHOEVEN R P M, et al. Human-in-the-loop performance assessment of optimized descents with time constraints[C]∥Twelfth USA/Europe Air Traffic Management Research and Development Seminar. Spain: Technical University of Catalonia, 2017. |
| [110] | HESS R A. Modeling human pilot adaptation to flight control anomalies and changing task demands[J]. Journal of Guidance, Control, and Dynamics, 2015, 39(3): 655-666. |
| [111] | WANG M, HUSSEIN A, ROJAS R F, et al. EEG-based neural correlates of trust in human-autonomy interaction[C]∥2018 IEEE Symposium Series on Computational Intelligence (SSCI). Piscataway: IEEE Press, 2018: 350-357. |
| [112] | KATE DEVITT S. Trustworthiness of autonomous systems[M]∥Foundations of Trusted Autonomy. Cham: Springer International Publishing, 2018: 161-184. |
| [113] | PRATS X, BENDRIS B, DALMAU R, et al. 4D continuous descent operations supported by an electronic flight bag: A human-in-the-loop study[C]∥2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2016. |
| [114] | LIU S, ZHOU C, SHAO H, et al. Research on automatic flight control system flight mode operation logic[J]. Journal of Physics: Conference Series, 2023, 2658(1): 012051. |
| [115] | LIU S, ZHOU C, SHAO H, et al. Research of modeling method of automatic flight control system FMCP windows[C]∥2024 3rd International Symposium on Aerospace Engineering and Systems (ISAES). Piscataway: IEEE Press, 2024: 212-217. |
| [116] | LANGFORD K, KILLE T, LEE S Y, et al. “In automation we trust”-Australian air traffic controller perspectives of increasing automation in air traffic management[J]. Transport Policy, 2022, 125: 352-362. |
| [117] | 闫鑫阳, 王丹, 齐林. 一种四维航迹空地协商的方法: CN109520506A[P]. 2019-03-26. |
| YAN X Y, WANG D, QI L. Four-dimensional flight path open space negotiation method: CN109520506A[P]. 2019-03-26 (in Chinese). | |
| [118] | 张阳, 金艳平, 陈飞飞, 等. 一种面向航空器自主运行的空地四维航迹协商系统架构: CN118629267A[P]. 2024-09-10. |
| ZHANG Y, JIN Y P, CHEN F F, et al. Air-ground four-dimensional flight path negotiation system architecture for autonomous operation of aircraft: CN118629267A[P]. 2024-09-10 (in Chinese). | |
| [119] | Federal Aviation Administration (FAA). Next generation air transportation system (NextGen)[EB/OL]. (2025-01-14)[2025-03-22]. . |
| [1] | Fan PU, Zhijie CHEN, Yang LIU, Xin GENG, Yongwen ZHU, Kejin REN. Air traffic management technologies for digital low-altitude integrated operations [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 531331-531331. |
| [2] | Dong SUI, Zhipeng CUI. A method for determining capacity of air routes intersection based on carbon emissions [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730699-730699. |
| [3] | Hua XIE, Site HAN, Jianan YIN, Xiaohui JI, Yichen YANG. Cooperative deduction and optimal allocation method for urban low-altitude UAV flight plan [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(19): 330018-330018. |
| [4] | Xiaoyu SHUI, Yanjun WANG, Ziming WANG, Mingtian PENG, Qiang SUN. Slot allocation of multi-airport system considering airport fairness [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 327212-327212. |
| [5] | Hua XIE, Fangzheng SU, Jianan YIN, Site HAN, Xinjue ZHANG. Network modeling and refined management of UAV flight conflicts in complex low altitude airspace [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 328226-328226. |
| [6] | Bing WANG, Runyuan ZOU, Zhening CHANG. Aircraft takeoff mass estimation method based on improved simulated annealing algorithm [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 328090-328090. |
| [7] | WANG Fei, HAN Xiangyu. Short-term prediction of air traffic flow based on fractal interpolation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 325585-325585. |
| [8] | XIE Hua, LI Zihong, YANG Lei, ZHU Yongwen, LIU Fangzi. Optimization of four-dimensional trajectory of city pair with limited capacity [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 325581-325581. |
| [9] | ZHAO Yifei, WANG Mengqi. Important theories and critical scientific technology of air traffic engineering [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 26537-026537. |
| [10] | ZHANG Junfeng, YOU Lubao, YANG Chunwei, HU Rong. Arrival sequencing and scheduling based on multi-objective Imperialist competitive algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 324439-324439. |
| [11] | CHEN Zhijie, TANG Jinhui, WANG Chong, CHENG Jizeng, CAO Shan, SHAO Xin. Using artificial intelligence in airspace system to improve airspace hierarchical governance capability [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 525018-525018. |
| [12] | YANG Lei, LI Wenbo, LIU Fangzi, CHEN Yutong, ZHAO Zheng. Multi-objective optimization of continuous descending trajectories in flexible airspace [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 324157-324157. |
| [13] | CHEN Yutong, HU Minghua, YANG Lei, ZHANG Haoran, ZHAO Zheng. Autonomous trajectory planning and conflict management technology in restricted airspace [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(9): 324045-324045. |
| [14] | LIU Jixin, JIANG Hao, DONG Xinfang, LAN Sijie, WANG Haozhe. Dynamic collaborative sequencing method for arrival flights based on air traffic density [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(7): 323717-323717. |
| [15] | ZHANG Honghai, TANG Yiwen, XU Yan. Optimizing arrival traffic flow in airport terminal airspace under trajectory based operations [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(7): 323844-323844. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

