Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (20): 531909.doi: 10.7527/S1000-6893.2025.31909
• Special Issue: Key Technologies for Supersonic Civil Aircraft • Previous Articles
Qing CHEN1,2, Zhonghua HAN1,2, Keshi ZHANG1,2(
), Jianling QIAO1,2, Yulin DING1,2, Wenping SONG1,2
Received:2025-02-27
Revised:2025-05-26
Accepted:2025-06-13
Online:2025-06-30
Published:2025-06-16
Contact:
Keshi ZHANG
E-mail:zhangkeshi@nwpu.edu.cn
Supported by:CLC Number:
Qing CHEN, Zhonghua HAN, Keshi ZHANG, Jianling QIAO, Yulin DING, Wenping SONG. A full-carpet design optimization method for low-boom supersonic civil aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531909.
| [1] | 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528. |
| ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507-2528 (in Chinese). | |
| [2] | 韩忠华, 钱战森, 乔建领. 声爆预测与低声爆设计方法[M]. 北京: 科学出版社, 2022. |
| HAN Z H, QIAN Z S, QIAO J L. Prediction of sonic boom and design method of low sonic boom[M]. Beijing: Science Press, 2022 (in Chinese). | |
| [3] | 钱战森, 韩忠华. 声爆研究的现状与挑战[J]. 空气动力学学报, 2019, 37(4): 601-619, 600. |
| QIAN Z S, HAN Z H. Progress and challenges of sonic boom research[J]. Acta Aerodynamica Sinica, 2019, 37(4): 601-619, 600 (in Chinese). | |
| [4] | 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4): 620-635. |
| HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft: A review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4): 620-635 (in Chinese). | |
| [5] | DOEBLER W J, WILSON S R, LOUBEAU A, et al. Simulation and regression modeling of NASA’s X-59 low-boom carpets across America[J]. Journal of Aircraft, 2023, 60(2): 509-520. |
| [6] | 张力文, 宋文萍, 韩忠华, 等. 声爆产生、传播和抑制机理研究进展[J]. 航空学报, 2022, 43(12): 025649. |
| ZHANG L W, SONG W P, HAN Z H, et al. Recent progress of sonic boom generation, propagation, and mitigation mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 025649 (in Chinese). | |
| [7] | 丁玉临, 韩忠华, 乔建领, 等. 超声速民机总体气动布局设计关键技术研究进展[J]. 航空学报, 2023, 44(2): 626310. |
| DING Y L, HAN Z H, QIAO J L, et al. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626310 (in Chinese). | |
| [8] | MAGLIERI D J, BOBBITT P J, PLOTKIN K J, et al. Sonic boom: Six decades of research: NASA SP-622 [R]. Washington, D. C.: NASA, 2014. |
| [9] | WHITHAM G B. The flow pattern of a supersonic projectile[J]. Communications on Pure and Applied Mathematics, 1952, 5(3): 301-348. |
| [10] | WALKDEN F. The shock pattern of a wing-body combination, far from the flight path[J]. Aeronautical Quarterly, 1958, 9(2): 164-194. |
| [11] | CHEUNG S H, EDWARDS T A, LAWRENCE S L. Application of computational fluid dynamics to sonic boom near-and mid-field prediction[J]. Journal of Aircraft, 1992, 29(5): 920-926. |
| [12] | MA B P, WANG G, REN J, et al. Near-field sonic-boom prediction and analysis with hybrid grid navier-stokes solver[J]. Journal of Aircraft, 2018, 55(5): 1890-1904. |
| [13] | ANDERSON G R, AFTOSMIS M J, NEMEC M. Cart3D simulations for the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2019, 56(3): 896-911. |
| [14] | RALLABHANDI S K. Advanced sonic boom prediction using the augmented Burgers equation[J]. Journal of Aircraft, 2011, 48(4): 1245-1253. |
| [15] | 乔建领, 韩忠华, 丁玉临, 等. 分层大气湍流场对远场声爆传播的影响[J]. 航空学报, 2023, 44(2): 626350. |
| QIAO J L, HAN Z H, DING Y L, et al. Effects of stratified atmospheric turbulence on farfield sonic boom propagation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626350 (in Chinese). | |
| [16] | 王迪, 冷岩, 杨龙, 等. 基于广义Burgers方程的声爆传播特性大气湍流影响[J]. 航空学报, 2023, 44(2): 626318. |
| WANG D, LENG Y, YANG L, et al. Atmospheric turbulence effects on sonic boom propagation based on augmented Burgers equation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 626318 (in Chinese). | |
| [17] | 单程军, 贡天宇, 易理哲, 等. 超声速民机高效高可信度声爆/气动多学科优化方法[J]. 航空学报, 2024, 45(24): 630573. |
| SHAN C J, GONG T Y, YI L Z, et al. High-efficiency and high-reliability sonic boom/aerodynamic multidisciplinary optimization method for supersonic civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630573 (in Chinese). | |
| [18] | LI W, GEISELHART K. Multidisciplinary design optimization of low-boom supersonic aircraft with mission constraints[J]. AIAA Journal, 2021, 59(1): 165-179. |
| [19] | ORDAZ I, LI W. Using CFD surface solutions to shape sonic boom signatures propagated from off-body pressure: AIAA-2013-2660[R]. Reston: AIAA, 2013. |
| [20] | JONES L B. Lower bounds for the pressure jump of the bow shock of a supersonic transport[J]. Aeronautical Quarterly, 1970, 21(1): 1-17. |
| [21] | SEEBASS R. Minimum sonic boom shock strengths and overpressures[J]. Nature, 1969, 221(5181): 651-653. |
| [22] | GEORGE A R, SEEBASS R. Sonic boom minimization including both front and rear shocks[J]. AIAA Journal, 1971, 9(10): 2091-2093. |
| [23] | DARDEN C M. Sonic-boom minimization with nose-bluntness relaxation: NASA-TP-1438[R]. Washington, D. C.: NASA, 1979. |
| [24] | NADARAJAH S K, JAMESON A, ALONSO J. Adjoint-based sonic boom reduction for wing-body configurations in supersonic flow[J]. Canadian Aeronautics and Space Journal, 2005, 51(4): 187-199. |
| [25] | NEMEC M, AFTOSMIS M. Parallel adjoint framework for aerodynamic shape optimization of component-based geometry: AIAA-2011-1249[R]. Reston: AIAA, 2011. |
| [26] | LI W, SHIELDS E. Generation of parametric equivalent-area targets for design of low-boom supersonic concepts: AIAA-2011-462[R]. Reston: AIAA, 2011. |
| [27] | LI W, RALLABHANDI S. Inverse design of low-boom supersonic concepts using reversed equivalent-area targets[J]. Journal of Aircraft, 2014, 51(1): 29-36. |
| [28] | HAN Z H, QIAO J L, ZHANG L W, et al. Recent progress of efficient low-boom design and optimization methods[J]. Progress in Aerospace Sciences, 2024, 146: 101007. |
| [29] | WINTZER M, ORDAZ I, FENBERT J W. Under-track CFD-based shape optimization for a low-boom demonstrator concept: AIAA-2015-2260[R]. Reston: AIAA, 2015. |
| [30] | UENO A, KANAMORI M, MAKINO Y. Multi-fidelity low-boom design based on near-field pressure signature: AIAA-2016-2033[R]. Reston: AIAA, 2016. |
| [31] | LI J, WRAY T J, AGARWAL R K. Shape optimization of supersonic bodies to reduce sonic boom signature: AIAA-2016-3432[R]. Reston: AIAA-2016. |
| [32] | RALLABHANDI S K, NIELSEN E J, DISKIN B. Sonic-boom mitigation through aircraft design and adjoint methodology[J]. Journal of Aircraft, 2014, 51(2): 502-510. |
| [33] | JIM T M S, FAZA G A, PALAR P S, et al. A multiobjective surrogate-assisted optimisation and exploration of low-boom supersonic transport planforms[J]. Aerospace Science and Technology, 2022, 128: 107747. |
| [34] | AFTOSMIS M J, NEMEC M, CLIFF S E. Adjoint-based low-boom design with Cart3D: AIAA-2011-3500[R]. Reston: AIAA, 2011. |
| [35] | CHOI S, ALONSO J, KROO I, et al. Multi-fidelity design optimization of low-boom supersonic business jets[C]∥10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2004: 4371. |
| [36] | ORDAZ I, LI W. Integration of off-track sonic boom analysis for supersonic aircraft conceptual design[J]. Journal of Aircraft, 2014, 51(1): 23-28. |
| [37] | PLOTKIN K J. Sonic boom shaping in three dimensions: AIAA-2009-3387[R]. Reston: AIAA, 2009. |
| [38] | GEORGE A R. Reduction of sonic boom by azimuthal redistribution of overpressure[J]. AIAA Journal, 1969, 7(2): 291-298. |
| [39] | ORDAZ I, WINTZER M, RALLABHANDI S K. Full-carpet design of a low-boom demonstrator concept: AIAA-2015-2261[R]. Reston: AIAA, 2021. |
| [40] | UENO A, KANAMORI M, MAKINO Y. Robust low-boom design based on near-field pressure signature in whole boom carpet[J]. Journal of Aircraft, 2017, 54(3): 918-925. |
| [41] | UENO A, MAKINO Y. Robust low-boom design in primary boom carpet: AIAA-2021-1270[R]. Reston: AIAA, 2021. |
| [42] | KIRZ J. Surrogate-based low-boom low-drag nose design for the JAXA S4 supersonic airliner: AIAA-2022-0706[R]. Reston: AIAA, 2022. |
| [43] | 冯晓强, 李占科, 宋笔锋. 超声速客机低音爆布局反设计技术研究[J]. 航空学报, 2011, 32(11): 1980-1986. |
| FENG X Q, LI Z K, SONG B F. A research on inverse design method of a lower sonic boom supersonic aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 1980-1986 (in Chinese). | |
| [44] | DING Y L, HAN Z H, QIAO J L, et al. Inverse design method for low-boom supersonic transport with lift constraint[J]. AIAA Journal, 2023, 61(7): 2840-2853. |
| [45] | 丁玉临. 超声速民机低声爆布局设计方法研究[D]. 西安: 西北工业大学, 2023. |
| DING Y L. Low-boom configuration design method for supersonic transport aircraft[D]. Xi’an: Northwestern Polytechnical University, 2023 (in Chinese). | |
| [46] | 李军府, 陈晴, 王伟, 等. 一种先进超声速民机低声爆高效气动布局设计[J]. 航空学报, 2024, 45(6): 629613. |
| LI J F, CHEN Q, WANG W, et al. Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613 (in Chinese). | |
| [47] | 黄江涛, 张绎典, 高正红, 等. 基于流场/声爆耦合伴随方程的超声速公务机声爆优化[J]. 航空学报, 2019, 40(5): 122505. |
| HUANG J T, ZHANG Y D, GAO Z H, et al. Sonic boom optimization of supersonic jet based on flow/sonic boom coupled adjoint equations[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):122505 (in Chinese). | |
| [48] | 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5): 121736. |
| QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121736 (in Chinese). | |
| [49] | ZHANG L W, HAN Z H, QIAO J L, et al. Effect of longitudinal lift distribution on sonic boom of a canard-wing-stabilator-body configuration[J]. Chinese Journal of Aeronautics, 2023, 36(6): 92-108. |
| [50] | 陈晴, 韩忠华, 杨瀚, 等. 机翼上反角对超声速民机全声爆毯声爆特性影响研究[J]. 气动研究与试验, 2024(1): 50-58. |
| CHEN Q, HAN Z H, YANG H, et al. Research on the effect of wing dihedral on full-carpet sonic boom[J]. Aerodynamic Research & Experiment, 2024(1): 50-58 (in Chinese). | |
| [51] | 马博平, 王刚, 雷知锦, 等. 网格对声爆近场预测影响的数值研究[J]. 西北工业大学学报, 2018, 36(5): 865-874. |
| MA B P, WANG G, LEI Z J, et al. Numerical investigation of influence of mesh property in nearfield sonic boom prediction[J]. Journal of Northwestern Polytechnical University, 2018, 36(5): 865-874 (in Chinese). | |
| [52] | CLEVELAND R O. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin: The University of Texas at Austin, 1995. |
| [53] | STEVENS S S. Perceived level of noise by Mark Ⅶ and decibels (E)[J]. The Journal of the Acoustical Society of America, 1972, 51(2B): 575-601. |
| [54] | 乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4): 663-674. |
| QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica, 2019, 37(4): 663-674 (in Chinese). | |
| [55] | QIAO J L, HAN Z H, ZHANG L W, et al. Far-field sonic boom prediction considering atmospheric turbulence effects: An improved approach[J]. Chinese Journal of Aeronautics, 2022, 35(9): 208-225. |
| [56] | PARK M A, NEMEC M. Nearfield summary and statistical analysis of the second AIAA sonic boom prediction workshop[J]. Journal of Aircraft, 2019, 56(3): 851-875. |
| [57] | 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. |
| HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese). | |
| [58] | HAN Z H. SurroOpt: A generic surrogate-based optimization code for aerodynamic and multidisciplinary design[C]∥30th Congress of the International Council of the Aeronautical Science, 2016. |
| [1] | Kefeng ZHENG, Wenping SONG, Han NIE, Yulin DING, Jianling QIAO, Qing CHEN, Yiheng WANG, Ke SONG, Keshi ZHANG. Natural laminar flow wing design method for supersonic civil aircraft considering full-aircraft sonic-boom characteristics [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531214-531214. |
| [2] | Chao YANG, Yuting TAN, Wei WANG, Yan ZHAO, Xiongqing YU. Multidisciplinary optimization with low-boom design for supersonic civil aircraft conceptual design [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531457-531457. |
| [3] | Linxuan YANG, Huicai MA, Liping PANG. Design and performance simulation of environmental control system for supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531585-531585. |
| [4] | Tianyu GONG, Chengjun SHAN, Lizhe YI, Yaosong LONG, Zhongtao CHENG. Impact of engine geometric parameters on sonic boom characteristics of supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(20): 531592-531592. |
| [5] | Junfu LI, Qing CHEN, Wei WANG, Zhonghua HAN, Yuting TAN, Yulin DING, Lu XIE, Jianling QIAO, Ke SONG, Junqiang AI. Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613-629613. |
| [6] | Chengjun SHAN, Tianyu GONG, Lizhe YI, Haohui YANG, Yaosong LONG. High-efficiency and high-reliability sonic boom/aerodynamic multidisciplinary optimization method for supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630573-630573. |
| [7] | Jianling QIAO, Zhonghua HAN, Yulin DING, Wenping SONG, Bifeng SONG. Effects of stratified atmospheric turbulence on farfield sonic boom propagation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626350-626350. |
| [8] | Yiran GU, Jiangtao HUANG, Shusheng CHEN, Deyuan LIU, Zhenghong GAO. Sonic boom inversion technology based on inverse augmented Burgers equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626258-626258). |
| [9] | Di WANG, Yan LENG, Long YANG, Zhonghua HAN, Zhansen QIAN. Atmospheric turbulence effects on sonic boom propagation based on augmented Burgers equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626318-626318. |
| [10] | Shanjie XU, Hongqiang LYU, Zhongchen LIU, Yan LENG, Xuejun LIU. Data analysis of sonic boom test based on probability model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626269-626269. |
| [11] | Zhongchen LIU, Zhansen QIAN, Xuefei LI, Yan LENG, Dapeng GUO. Wind tunnel test techniques for exhaust nozzle plume effects on near-field sonic boom [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626952-626952. |
| [12] | Yahui SONG, Gaoyu FAN, Lixia QU, Yuelin ZHANG, Yue XU, Shuo HAN. Progress of aircraft sonic boom flight test measurement technology: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626186-626186. |
| [13] | ZHANG Liwen, SONG Wenping, HAN Zhonghua, QIAN Zhansen, SONG Bifeng. Recent progress of sonic boom generation, propagation, and mitigation mechanism [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 25649-025649. |
| [14] | YUAN Jisen, SUN Jue, LI Lingyu, YU Shenghao, NIE Han, GAO Liangjie, HAN Zhonghua, QIAN Zhansen. Progress of supersonic aircraft laminar flow layout design and evaluation technologies [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526316-526316. |
| [15] | WANG Di, QIAN Zhansen, LENG Yan. High-order scheme discretization of sonic boom propagation model based on augmented Burgers equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 124916-124916. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

