ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (11): 526316-526316.doi: 10.7527/S1000-6893.2021.26316
• Reviews • Previous Articles Next Articles
YUAN Jisen1,2, SUN Jue1,2, LI Lingyu1,2, YU Shenghao1,2, NIE Han3,4, GAO Liangjie1,2, HAN Zhonghua3,4, QIAN Zhansen1,2
Received:
2021-09-02
Revised:
2021-10-11
Online:
2022-11-15
Published:
2021-11-23
CLC Number:
YUAN Jisen, SUN Jue, LI Lingyu, YU Shenghao, NIE Han, GAO Liangjie, HAN Zhonghua, QIAN Zhansen. Progress of supersonic aircraft laminar flow layout design and evaluation technologies[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526316-526316.
[1] Douglas Aircraft Company. Study of high-speed civil transports, NASA CR-1989-4235[R]. Washington, D.C.:NASA, 1989. [2] SCHMITT V, REDEKER G. Research programs for transport aircraft in Europe[C]//2000 World Aviation Conference. Reston:AIAA, 2000. [3] PLOTKIN K, MAGLIERI D. Sonic boom research:History and future[C]//33rd AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2003. [4] MORGENSTERN J, NORSTRUD N, STELMACK M, et al. Advanced concept studies for supersonic commercial transports entering service in 2030-35(N+3)[C]//28th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2010. [5] SAKATA K. Supersonic experimental airplane(NEXST) for next generation SST technology:AIAA-2002-0527[R]. Reston:AIAA, 2002. [6] 韩忠华, 乔建领, 丁玉临, 等. 新一代环保型超声速客机气动相关关键技术与研究进展[J]. 空气动力学学报, 2019, 37(4):620-635. HAN Z H, QIAO J L, DING Y L, et al. Key technologies for next-generation environmentally-friendly supersonic transport aircraft:a review of recent progress[J]. Acta Aerodynamica Sinica, 2019, 37(4):620-635(in Chinese). [7] COLLIER JR F S. An overview of recent subsonic laminar flow control flight experiments[C]//23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston:AIAA, 1993. [8] JOSLIN R D. Overview of laminar flow control:NASA/TP-1988-208705[R]. Washington, D.C.:NASA, 1998. [9] WAGNER R, MADDALON D V, BARTLETT D W, et al. Fifty years of laminar flow flight testing[C]//Aerospace Technology Conference and Exposition, 1988. [10] HORSTMANN K, MILEY S. Comparison of flight an wind tunnel investigations of tolmien-schlichting-waves on an aircraft wing[C]//DGLR/AAAF/RAeS Proceedings First European Forum on Laminar Flow Technology, 1992:45-51. [11] HORSTMANN K H, QUAST A, REDEKER G. Flight and wind-tunnel investigations on boundary-layer transition[J]. Journal of Aircraft, 1990, 27(2):146-150. [12] VERMEERSCH O, YOSHIDA K, UEDA Y, et al. Natural laminar flow wing for supersonic conditions:Wind tunnel experiments, flight test and stability computations[J]. Progress in Aerospace Sciences, 2015, 79:64-91. [13] STURDZA P. An aerodynamic design method for supersonic natural laminar flow aircraft[D]. Stanford:Stanford University, 2003. [14] 比施根斯. 超声速飞机空气动力学和飞行力学[M]. 郭桢, 译. 上海:上海交通大学出版社, 2009. BUSHGENS G S. Aerodynamics and flight dynamics for supersonic aircraft[M]. GUO Z, translated. Shanghai:Shanghai Jiao Tong University Press, 2009(in Russian). [15] KVCHEMANN D. The aerodynamic design of aircraft[M]. Reston:AIAA, 2012. [16] GASTER M. On the flow along swept leading edges[J]. Aeronautical Quarterly, 1967, 18(2):165-184. [17] CUMPSTY N A, HEAD M R. The calculation of the three-dimensional turbulent boundary layer:part III. Comparison of attachment-line calculations with experiment[J]. Aeronautical Quarterly, 1969, 20(2):99-113. [18] POLL D I A. Some observations of the transition process on the windward face of a long yawed cylinder[J]. Journal of Fluid Mechanics, 1985, 150:329-356. [19] ARNAL D, JUILLEN J C, RENEAUX J, et al. Effect of wall suction on leading edge contamination[J]. Aerospace Science and Technology, 1997, 1(8):505-517. [20] BIPPES H. Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability[J]. Progress in Aerospace Sciences, 1999, 35(4):363-412. [21] SARIC W, REED H. Crossflow instabilities-theory & technology[C]//41st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003. [22] 徐国亮, 符松. 可压缩横流失稳及其控制[J]. 力学进展, 2012, 42(3):262-273. XU G L, FU S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3):262-273(in Chinese). [23] MARTIN M, CARPENTER A, SARIC W. Swept-wing laminar flow control studies using Cessna O-2A test aircraft[C]//2008 U.S. Air Force T&E Days. Reston:AIAA, 2008. [24] SARIC W S, WEST D E, TUFTS M W, et al. Experiments on discrete roughness element technology for swept-wing laminar flow control[J]. AIAA Journal, 2019, 57(2):641-654. [25] OWENS L R, BEELER G B, BALAKUMAR P, et al. Flow disturbance and surface roughness effects on cross-flow boundary-layer transition in supersonic flows[C]//44th AIAA Fluid Dynamics Conference. Reston:AIAA, 2014. [26] RESHOTKO E. Boundary-layer stability and transition[J]. Annual Review of Fluid Mechanics, 1976, 8:311-349. [27] MACK L. Boundary-layer linear stability theory:N84-3345723-24[R]. Washington, D.C.:NASA, 1984. [28] REED H L, SARIC W S, ARNAL D. Linear stability theory applied to boundary layers[J]. Annual Review of Fluid Mechanics, 1996, 28:389-428. [29] FLORYAN J M. On the Görtler instability of boundary layers[J]. Progress in Aerospace Sciences, 1991, 28(3):235-271. [30] SARIC W S. Görtler vortices[J]. Annual Review of Fluid Mechanics, 1994, 26:379-409. [31] REN J, LIU J X, FU S. The role of Görtler vortices in the hypersonic boundary layer transition[C]//44th AIAA Fluid Dynamics Conference. Reston:AIAA, 2014. [32] HALL P, MALIK M R, POLL D I A. On the stability of an infinite swept attachment line boundary layer[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1984, 395(1809):229-245. [33] THEOFILIS V. Spatial stability of incompressible attachment-line flow[J]. Theoretical and Computational Fluid Dynamics, 1995, 7(3):159-171. [34] HEEG R S. Stability and transition of attachment-line flow[M]. Enschede Thesis:Universiteit Twente, 1998. [35] 王哲夫, 王亮, 符松. 后掠Hiemenz流动失稳敏感性分析及等离子体控制[C]//第十届全国流体力学学术会议摘要集,2018. WANG Z F, WANG L, FU S. Sensitivity analysis of swept Hiemenz flow instability and plasma control[C]//Abstracts of the 10th National Conference on Fluid Mechanics, 2018(in Chinese). [36] PFENNINGER W. Some results from the X-21 program. Part I. Flow phenomenon at the leading edge of swept wings:AGARDograph-97[R]. Pairs:AGARD, 1965. [37] POLL D I A. Some aspects of the flow near a swept attachment line with particular reference to boundary layer transition[D]. Bedford:Cranfield Institute of Technology, 1978. [38] POLL D I A. Transition in the infinite swept attachment line boundary layer[J]. Aeronautical Quarterly, 1979, 30(4):607-629. [39] POLL D I A. Boundary layer transition on the windward face of Space Shuttle during re-entry[C]//20th Thermophysics Conference. Reston:AIAA, 1985. [40] ARNAL D. Boundary layer transition:prediction, application to drag reduction:AGARD R-786[R]. Paris:AGARD, 1992. [41] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese). [42] 孙爵.超声速机翼层流设计技术研究[D].中国:中国航空研究院, 2021. SUN J. Research on laminar flow design technology of supersonic wing[D]. China:Chinese Aeronautical Establishment, 2021(in Chinese). [43] 刘沛清, 张雯, 郭昊. 大型运输机的减阻技术[J]. 力学与实践, 2018, 40(2):129-139, 154. LIU P Q, ZHANG W, GUO H. Drag reduction technique for large transport aircraft[J]. Mechanics in Engineering, 2018, 40(2):129-139, 154(in Chinese). [44] JOSLIN R D. Aircraft laminar flow control[J]. Annual Review of Fluid Mechanics, 1998, 30:1-29. [45] MALMUTH N, FEDOROV A, SHALAEV V, et al. Problems in high speed flow prediction relevant to control[C]//2nd AIAA Theoretical Fluid Mechanics Meeting. Reston:AIAA, 1998. [46] SARIC W, RUBEN CARRILLO J JR, REIBERT M. Leading-edge roughness as a transition control mechanism[C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1998. [47] CORKE T C. Plasma actuator array development for cross-flow instability control[D]. Notre Dame:University of Notre Dame, 2001. [48] RASHEED A, HORNUNG H G, FEDOROV A V, et al. Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface[J]. AIAA Journal, 2002, 40(3):481-489. [49] ZHAO R, LIU T, WEN C Y, et al. Theoretical modeling and optimization of porous coating for hypersonic laminar flow control[J]. AIAA Journal, 2018, 56(8):2942-2946. [50] 赵瑞, 严昊, 席柯, 等. 声学超表面抑制第一模态研究[J]. 航空科学技术, 2020, 31(11):104-112. ZHAO R, YAN H, XI K, et al. Research on acoustic metasurfaces for the suppression of the first mode[J]. Aeronautical Science & Technology, 2020, 31(11):104-112(in Chinese). [51] 王蔚彰, 孔维萱, 严昊, 等. 声学超表面抑制高速边界层内宽频不稳定模态研究[J/OL]. 北京航空航天大学学报,(2021-07-13)[2021-09-02].DOI:10.13700/j.bh.1001-5965.2021.0235. WANG W Z, KONG W X, YAN H, et al. Acoustic metasurfaces for the stabilization of broadband unstable modes in high speed boundary layer[J/OL]. Journal of Beijing University of Aeronautics and Astronautics,(2021-07-13)[2021-09-02].DOI:10.13700/j.bh.1001-5965.2021.0235(in Chinese). [52] REIBERT M, SARIC W, RUBEN CARRILLO J JR, et al. Experiments in nonlinear saturation of stationary crossflow vortices in a swept-wing boundary layer[C]//34th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1996. [53] OWENS L R, BEELER G, KING R, et al. Supersonic crossflow transition control in ground and flight tests[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019. [54] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese). [55] CORKE T C, ENLOE C L, WILKINSON S P. Dielectric barrier discharge plasma actuators for flow control[J]. Annual Review of Fluid Mechanics, 2010, 42:505-529. [56] SCHUELE C Y, CORKE T C, MATLIS E. Control of stationary cross-flow modes in a Mach 3.5 boundary layer using patterned passive and active roughness[J]. Journal of Fluid Mechanics, 2013, 718:5-38. [57] SERPIERI J, YADALA VENKATA S, KOTSONIS M. Conditioning of cross-flow instability modes using dielectric barrier discharge plasma actuators[J]. Journal of Fluid Mechanics, 2017, 833:164-205. [58] DÖRR P C, KLOKER M J. Crossflow transition control by upstream flow deformation using plasma actuators[J]. Journal of Applied Physics, 2017, 121(6):063303. [59] SCHUELE C Y. Control of stationary cross-flow modes in a Mach 3.5 boundary layer using patterned passive and active roughness[D]. Notre Dame:University of Notre Dame, 2011. [60] SMITH A M O, GAMBERONI N. Transition, pressure gradient and stability theory[M]. Long Beach:Douglas Aircraft Company, 1956. [61] VAN INGEN J. A suggested semi-empirical method for the calculation of the boundary layer transition region:VTH-74[R]. Delft:Delft University of Technology, 1956. [62] 周恒, 赵耕夫. 流动稳定性[M]. 北京:国防工业出版社, 2004:1-224. ZHOU H, ZHAO G F. Hydrodynamic stability[M]. Beijing:National Defense Industry Press, 2004:1-224(in Chinese). [63] 罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1):357-372. LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):357-372(in Chinese). [64] MALIK M, ZANG T, BUSHNELL D. Boundary layer transition in hypersonic flows[C]//2nd International Aerospace Planes Conference. Reston:AIAA, 1990. [65] BERRY S, CHEN F J, WILDER M, et al. Boundary layer transition experiments in support of the hypersonics program[C]//39th AIAA Thermophysics Conference. Reston:AIAA, 2007. [66] CHANG C L. Langley stability and transition analysis code(LASTRAC) version 1.2 user manual:NASA/TM-2004-213233[R].Washington, D.C.:NASA, 2004. [67] CHOUDHARI M, CHANG C L, JENTINK T, et al. Transition analysis for the HIFiRE-5 vehicle[C]//39th AIAA Fluid Dynamics Conference. Reston:AIAA, 2009. [68] 宋文萍, 吴猛猛, 朱震, 等. 面向层流减阻设计的转捩预测方法研究[J]. 空气动力学学报, 2018, 36(2):213-228. SONG W P, WU M M, ZHU Z, et al. Transition prediction methods towards significant drag reduction via laminar flow technology[J]. Acta Aerodynamica Sinica, 2018, 36(2):213-228(in Chinese). [69] 黄章峰, 万兵兵, 段茂昌. 高超声速流动稳定性及转捩工程应用若干研究进展[J]. 空气动力学学报, 2020, 38(2):368-378. HUANG Z F, WAN B B, DUAN M C. Progresses in engineering application research on hypersonic flow stability and transition[J]. Acta Aerodynamica Sinica, 2020, 38(2):368-378(in Chinese). [70] 黄章峰, 肖凌晨, 罗纪生. 超声速边界层转捩预测eN方法及其软件开发[J]. 空气动力学学报, 2018, 36(2):279-285. HUANG Z F, XIAO L C, LUO J S. Transition prediction eN method and its software development for supersonic boundary layers[J]. Acta Aerodynamica Sinica, 2018, 36(2):279-285(in Chinese). [71] ARNAL D, CASALIS G. Laminar-turbulent transition prediction in three-dimensional flows[J]. Progress in Aerospace Sciences, 2000, 36(2):173-191. [72] SCHRAUF G. LILO 2.1 user's guide and tutorial:GSSC Technical Report 6[R]. Boudreau-Ouest:GSSC, 2006. [73] KRUMBEIN A. Automatic transition prediction and application to three-dimensional wing configurations[J]. Journal of Aircraft, 2007, 44(1):119-133. [74] ELIASSON P, HANIFI A, PENG S H. Influence of transition on high-lift prediction with the NASA trap wing model[C]//29th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2011. [75] 董军, 高德峰, 任园军, 等. eN-Database转捩预测方法在三维非结构求解器中的耦合与应用[J]. 沈阳航空航天大学学报, 2015, 32(2):11-17. DONG J, GAO D F, REN Y J, et al. Coupling and application of eN-database method to transition prediction in a 3D unstructured solver[J]. Journal of Shenyang Aerospace University, 2015, 32(2):11-17(in Chinese). [76] DI PASQUALE D, RONA A, GARRETT S J. selective review of CFD transition models[C]//39th AIAA Fluid Dynamics Conference, 2009. [77] WHITE F M. Viscous fluid flow[M]. 2nd ed. New York:McGraw-Hill, 1991. [78] MACK L M. Linear stability theory and the problem of supersonic boundary-layer transition[J]. AIAA Journal, 1975, 13(3):278-289. [79] 向星皓, 张毅锋, 陈坚强, 等. 横流转捩模型研究进展[J]. 空气动力学学报, 2018, 36(2):254-264, 180. XIANG X H, ZHANG Y F, CHEN J Q, et al. Progress in transition models for cross-flow instabilities[J]. Acta Aerodynamica Sinica, 2018, 36(2):254-264, 180(in Chinese). [80] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906. [81] FU S, WANG L. RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory[J]. Progress in Aerospace Sciences, 2013, 58:36-59. [82] FRAUHOLZ S, REINARTZ B U, MVLLER S, et al. Transition prediction for scramjets using γ-Reθt model coupled to two turbulence models[J]. Journal of Propulsion and Power, 2015, 31(5):1404-1422. [83] CHENG G, NICHOLS R, NEROORKAR K, et al. Validation and assessment of turbulence transition models[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009. [84] BENSASSI K, LANI A, RAMBAUD P. Numerical investigations of local correlation-based transition model in hypersonic flows[C]//42nd AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2012. [85] 张玉伦, 王光学, 孟德虹, 等. γ-Reθ转捩模型的标定研究[J]. 空气动力学学报, 2011, 29(3):295-301. ZHANG Y L, WANG G X, MENG D H, et al. Calibration of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2011, 29(3):295-301(in Chinese). [86] 张毅锋, 张益荣, 毛枚良, 等. γ-Reθt转捩模型在高超软件平台Chant上的标定研究[C]//第十七届全国高超声速气动力/热学术交流会, 2013. ZHANG Y F, ZHANG Y R, MAO M L, et al. Calibration research of γ-Reθt transition model on chant software platform[C]//The 17th National Hypersonic Aerodynamics/Thermal Academic Exchange Conference, 2013(in Chinese). [87] 尚庆, 陈林, 袁香江. γ-Reθt模型在高超声速钝双楔数值模拟中的应用[C]//第十七届全国高超声速气动力/热学术交流会, 2013. SHANG Q, CHEN L, YUAN X J. Application of γ-Reθt model in numerical simulation of hypersonic blunt double wedge[C]//The 17th National Hypersonic Aerodynamics/Thermal Academic Exchange Conference, 2013(in Chinese). [88] 刘周, 龚安龙, 杨云军, 等. 基于γ-Reθt转捩模型的尖锥超声速流动转捩模拟[C]//第十七届全国高超声速气动力/热学术交流会, 2013. LIU Z, GONG A L, YANG Y J, et al. Transition simulation of pointed cone supersonic flow based on γ-Reθt transition model[C]//The 17th National Hypersonic Aerodynamics/Thermal Academic Exchange Conference, 2013(in Chinese). [89] 郑赟, 李虹杨. 基于新的经验关联公式的γ-Reθ转捩模型在高超声速流动中的应用[J]. 推进技术, 2015, 36(6):839-845. ZHENG Y, LI H Y. Application of γ-Reθ transition model in hypersonic flow based on new correlation equation[J]. Journal of Propulsion Technology, 2015, 36(6):839-845(in Chinese). [90] ZHANG X D, GAO Z H. A numerical research on a compressibility-correlated Langtry's transition model for double wedge boundary layer flows[J]. Chinese Journal of Aeronautics, 2011, 24(3):249-257. [91] HAO Z H, YAN C, QIN Y P, et al. Improved γ-Reθt model for heat transfer prediction of hypersonic boundary layer transition[J]. International Journal of Heat and Mass Transfer, 2017, 107:329-338. [92] YOU Y C, LUEDEKE H, EGGERS T, et al. Application of the y-reot transition model in high speed flows[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston AIAA, 2012. [93] WALTERS D K, LEYLEK J H. A new model for boundary layer transition using a single-point RANS approach[J]. Journal of Turbomachinery, 2004, 126(1):193-202. [94] 宋博, 李椿萱. 基于Favré平均的高超声速可压缩转捩预测模型[J]. 中国科学:技术科学, 2010, 40(8):879-885. SONG B, LI C X. Prediction model of hypersonic compressible transition based on Favré average[J]. Scientia Sinica (Technologica), 2010, 40(8):879-885(in Chinese). [95] WANG L, FU S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1):165-187. [96] WANG L, FU S, CARNARIUS A, et al. A modular RANS approach for modelling laminar-turbulent transition in turbomachinery flows[J]. International Journal of Heat and Fluid Flow, 2012, 34:62-69. [97] ZHOU L, YAN C, HAO Z H, et al. Improved k-ω-γ model for hypersonic boundary layer transition prediction[J]. International Journal of Heat and Mass Transfer, 2016, 94:380-389. [98] MACK L M. Transition prediction and linear stability theory:N78-1431605-34[R]. Washington, D.C.:NASA, 1977. [99] TOKUGAWA N, KWAK D Y, YOSHIDA K, et al. Transition measurement of natural laminar flow wing on supersonic experimental airplane NEXST-1[J]. Journal of Aircraft, 2008, 45(5):1495-1504. [100] BOUCHARDY A M, DURAND G. Processing of infrared thermal images for aerodynamic research[C]//Proceeding of SPIE, 1983, 397:304-309. [101] KOWALEWSKI T, LIGRANI P, DREIZLER A, et al. Temperature and heat flux[M]//Springer handbook of experimental fluid mechanics. Berlin:Springer Berlin Heidelberg, 2007:487-561. [102] WATKINS N, GOODMAN K Z, PEAK S. Transition detection at cryogenic temperatures using a carbon-based resistive heating layer coupled with temperature sensitive paint[C]//AIAA Scitech 2019 Forum. Reston:AIAA, 2019. [103] 王猛, 李玉军, 赵荣奂, 等. 基于电加热涂层的红外热像转捩探测技术[J]. 气动研究与实验, 2021, 33(1):46-52. WANG M, LI Y J, ZHAO R H, et al. The infrared thermography boundary transition detecting technique based on electric heating coating[J]. Aerodynamic Research & Experiment, 2021, 33(1):46-52(in Chinese). [104] OBARA C J. Sublimating chemical technique for boundary-layer flow visualizationin flight testing[J]. Journal of Aircraft, 1988, 25(6):493-498. [105] RADEZTSKY R H, REIBERT M S, SARIC W S. Effect of isolated micron-sized roughness on transition in swept-wing flows[J]. AIAA Journal, 1999, 37(11):1370-1377. [106] WHITE E, SARIC W. Application of variable leading-edge roughness for transition control on swept wings[C]//38th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2000. [107] HUNT L, SARIC W. Boundary-layer receptivity of three-dimensional roughness arrays on a swept-wing[C]//41st AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2011. [108] ARCHAMBAUD J P, LOUIS F, SERAUDIE A, et al. Natural transition in supersonic flows:Flat plate, swept cylinder, swept wing[C]//34th AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2004. [109] UEDA Y, YOSHIDA K, MATSUSHIMA K, et al. Supersonic natural-laminar-flow wing-design concept at high-Reynolds-number conditions[J]. AIAA Journal, 2014, 52(6):1294-1306. [110] BOUSLOG S, AN M, HARTMANN L, et al. Review of boundary layer transition flight data on the Space ShuttleOrbiter[C]//29th Aerospace Sciences Meeting. Reston:AIAA, 1991. [111] CAMPBELL R L, LYNDE M N. Natural laminar flow design for wings with moderate sweep[C]//34th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2016. [112] LYNDE M N, CAMPBELL R L. Expanding the natural laminar flow boundary for supersonic transports[C]//34th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2016. [113] YOSHIDA K. Supersonic drag reduction technology in the scaled supersonic experimental airplane project by JAXA[J]. Progress in Aerospace Sciences, 2009, 45(4-5):124-146. [114] IDE Y, YOSHIDA K, UEDA Y. Stability characteristics of supersonic natural laminar flow wing design concept[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012. [115] ARNAL D, UNCKEL C G, KRIER J, et al. Supersonic laminar flow control studies in the SUPERTRAC project[C]//Proceedings of 25th Congress of International Council of the Aeronautical Science, 2006. [116] IULIANO E, DIN I S E, DONELLI R, et al. Natural laminar flow design of a supersonic transport jet wing body[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2009. [117] IULIANO E, QUAGLIARELLA D, DONELLI R S, et al. Design of a supersonic natural laminar flow wing-body[J]. Journal of Aircraft, 2011, 48(4):1147-1162. |
[1] | Xuehe WANG, Chunshuo CHAI, Shilong XING, Feng FAN, Shuilin HUANG. Design of coaxial high⁃speed helicopter airfoil in reverse flow region and its drag reduction mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529960-529960. |
[2] | Junfu LI, Qing CHEN, Wei WANG, Zhonghua HAN, Yuting TAN, Yulin DING, Lu XIE, Jianling QIAO, Ke SONG, Junqiang AI. Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613-629613. |
[3] | Guangjia LI, Hongbo WANG, Kai ZHANG, Zhisheng YI. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529644-529644. |
[4] | Fanyu ZENG, Yunlong QIU, Zhanwei CAO, Lun ZHANG, Weifang CHEN. Flow control and drag reduction characteristics of micro-blowing array on supersonic turbulent boundary layer [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729396-729396. |
[5] | Shiqi GAO, Bo DING, Xuzhen XIE, Zheng LI, Lin CHEN, Shouyuan QIAN, Zihan JIAO, Guanghui BAI. Drag reduction mechanism using plasma synthetic jet in high⁃speed flow [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729373-729373. |
[6] | Rong HAN, Wei LIU, Xiaoliang YANG. Dynamic drag reduction mechanism of self-aligned aerodisks on hypersonic aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126633-126633. |
[7] | Pinpeng ZENG, Shusheng CHEN, Jinping LI, Muliang JIA, Zhenghong GAO. Numerical simulation of heat reduction on blunt-headed bodies by combined scheme of drag reduction spike and annular jets [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 128407-128407. |
[8] | Di WANG, Yan LENG, Long YANG, Zhonghua HAN, Zhansen QIAN. Atmospheric turbulence effects on sonic boom propagation based on augmented Burgers equation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626318-626318. |
[9] | Yulin DING, Zhonghua HAN, Jianling QIAO, Han NIE, Wenping SONG, Bifeng SONG. Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 626310-626310. |
[10] | Guangsheng ZHU, Shiyong YAO, Yi DUAN. Research progress and engineering application of flow control technology for drag and heat reduction of high-speed vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 529049-529049. |
[11] | Yating FENG, Hui ZHANG. Aerodynamic drag reduction device based on rear wind energy harvesting [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 180-191. |
[12] | Xudong ZHANG, Zheng LI, Hao DONG, Siyuan GAO, Zubi JI, Kaixin LI, Guanghui BAI. Drag reduction characteristics of opposing plasma synthetic jet in hypersonic flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 115-123. |
[13] | LI Jun, WANG Junfeng, ZHAO Yatian, LUO Shibin. Research on combinational configuration of spike and multi-jets in off-design regimes [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 125949-125949. |
[14] | HAN Luyang, WANG Bin, PU Liang, CHEN Qing, ZHENG Haibin. Research progress on mechanism and related problems of energy deposition drag reduction technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 26032-026032. |
[15] | ZHANG Liwen, SONG Wenping, HAN Zhonghua, QIAN Zhansen, SONG Bifeng. Recent progress of sonic boom generation, propagation, and mitigation mechanism [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 25649-025649. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341