Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (6): 629595-629595.doi: 10.7527/S1000-6893.2023.29595
• Special Topic: New Conceptual Aerodynamic Layout Design for Aircraft • Previous Articles Next Articles
Shusheng CHEN1(), Muliang JIA1, Yanxu LIU1, Zhenghong GAO1, Xinghao XIANG2
Received:
2023-09-18
Revised:
2023-09-28
Accepted:
2023-11-03
Online:
2024-03-25
Published:
2023-11-16
Contact:
Shusheng CHEN
E-mail:sshengchen@nwpu.edu.cn
Supported by:
CLC Number:
Shusheng CHEN, Muliang JIA, Yanxu LIU, Zhenghong GAO, Xinghao XIANG. Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629595-629595.
1 | 李雪江, 刘峰, 乔宇. 变体飞行器发展现状与应用前景[J]. 飞机设计, 2022, 42(5): 1-7, 13. |
LI X J, LIU F, QIAO Y. Development and application prospect of morphing aircraft[J]. Aircraft Design, 2022, 42(5): 1-7, 13 (in Chinese). | |
2 | 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443. |
BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443 (in Chinese). | |
3 | JHA A K, KUDVA J N. Morphing aircraft concepts, classifications, and challenges[C]∥ Smart Structures and Materials. Proc SPIE 5388, Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies. San Diego: SPIE, 2004, 5388: 213-224. |
4 | 李军府, 艾俊强, 董海锋. 飞机变形技术发展探究[J]. 航空科学技术, 2009, 20(2): 3-6. |
LI J F, AI J Q, DONG H F. Research on the development of aircraft morphing technologies[J]. Aeronautical Science and Technology, 2009, 20(2): 3-6 (in Chinese). | |
5 | SMITH S B, NELSON D W. Determination of the aerodynamic characteristics of the mission adaptive wing[J]. Journal of Aircraft, 1990, 27(11): 950-958. |
6 | PERRY B III, COLE S R, MILLER G D. Summary of an active flexible wing program[J]. Journal of Aircraft, 1995, 32(1): 10-15. |
7 | CLARKE R, ALLEN M, DIBLEY R, et al. Flight test of the F/A-18 active aeroelastic wing airplane[C]∥ Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2005: AIAA2005-6316. |
8 | PENDLETON E, FLICK P, PAUL D, et al. The X-53 A summary of the active aeroelastic wing flight research program[C]∥ Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: AIAA2007-1855. |
9 | KUDVA J N. Overview of the DARPA smart wing project[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(4): 261-267. |
10 | KUZMINA S, ISHMURATOV F, ZICHENKOV M, et al. Integrated numerical and experimental investigations of the Active/Passive Aeroelastic concepts on the European Research Aeroelastic Model (EuRAM) [J]. Journal of Aeroelasticity and Structural Dynamics, 2011, 2(2): 31-51. |
11 | LOVE M, ZINK P, STROUD R, et al. Demonstration of morphing technology through ground and wind tunnel tests[C]∥ Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: AIAA2007-1729. |
12 | TAKAHASHI T, SPALL R, TURNER D, et al. A multi-disciplinary assessment of morphing aircraft technology applied to tactical cruise missile configuations[C]∥ Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2004: AIAA2004-1725. |
13 | FLANAGAN J, STRUTZENBERG R, MYERS R, et al. Development and flight testing of a morphing aircraft, the NextGen MFX-1[C]∥ Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: AIAA2007-1707. |
14 | KUZMINA S, ISHMURATOV F, ZICHENKOV M, et al. Wind tunnel testing of adaptive wing structures[M]∥ Morphing Wing Technologies. Amsterdam: Elsevier, 2018: 713-755. |
15 | CONCILIO A, DIMINO I, PECORA R. SARISTU: adaptive Trailing Edge Device (ATED) design process review[J]. Chinese Journal of Aeronautics, 2021, 34(7): 187-210. |
16 | CUMMING S B, SMITH M S, ALI A, et al. Aerodynamic flight test results for the adaptive compliant trailing edge[C]∥ Proceedings of the AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2016: AIAA2016-3855. |
17 | 张庆, 董彦非, 李恒, 等. 展向自适应机翼总体气动特性分析[J]. 西安交通大学学报, 2020, 54(10): 174-184. |
ZHANG Q, DONG Y F, LI H, et al. Computational investigation of overall aerodynamic characteristics for spanwise adaptive wing[J]. Journal of Xi’an Jiaotong University, 2020, 54(10): 174-184 (in Chinese). | |
18 | MOHILT M, BENAFAN O. Spanwise adaptive wing: AFRC-E-DAA-TN46764[R]. Washington D.C.: NASA, 2017. |
19 | SMITH M S, SANDWICH C, ALLEY N R. Aerodynamic Analyses in Support of the Spanwise Adaptive Wing Project: AFRC-E-DAA-TN57436[R]. Atlanta: AIAA Aviation, 2018. |
20 | MAROUF A, SIMIRIOTIS N, TÔ J B, et al. Smart morphing and sensing for the wings of the future[M]. Berlin: Cham: Springer International Publishing, 2022: 17-36. |
21 | CHEUNG K, CELLUCCI D, COPPLESTONE G, et al. Development of mission adaptive digital composite aerostructure technologies (MADCAT)[C]∥ Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017: AIAA2017-4273. |
22 | AIRBUS S E. Airbus launches extra high performance wing demonstrator to fortify decarbonisation ambition[EB/OL]. [2023-10-31]. . |
23 | 杨森, 刘峰, 聂瑞, 等. 变体飞行器智能材料驱动器和柔性蒙皮研究进展[J/OL]. 航空工程进展: 1-13 [2023-10-12]. . |
YANG S, LIU F, NIE R, et al. Review of smart materials actuator and flexible skin for morphing aircraft[J/OL]. Advances in Aeronautical Science and Engineering: 1-13 [2023-10-12]. (in Chinese). | |
24 | 吴斌, 杜旭朕, 汪嘉兴. 变体飞机智能结构技术进展[J]. 航空科学技术, 2022, 33(12): 13-30. |
WU B, DU X Z, WANG J X. Smart structure technology progress of morphing aircraft[J]. Aeronautical Science & Technology, 2022, 33(12): 13-30 (in Chinese). | |
25 | 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10): 527449. |
RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527449 (in Chinese). | |
26 | 董二宝. 智能变形飞行器结构实现机制与若干关键技术研究[D]. 合肥: 中国科学技术大学, 2010. |
DONG E B. Research on structure realization mechanism and some key technologies of intelligent deformable aircraft[D]. Hefei: University of Science and Technology of China, 2010 (in Chinese). | |
27 | 白皓. 头部局部轮廓变形对增强飞行器机动性的研究[D]. 合肥: 中国科学技术大学, 2011. |
BAI H. Study on local contour deformation of head to enhance maneuverability of aircraft[D].Hefei: University of Science and Technology of China, 2011 (in Chinese). | |
28 | MILLER C G III, GNOFFO P A. Pressure distributions and shock shapes for a bent-nose biconic at incidence[J]. AIAA Journal, 1982, 20(8): 1150-1152. |
29 | LANDERS M, HALL L, AUMAN L, et al. Deflectable nose and canard controls for a fin-stabilized projectile at supersonic and hypersonic speeds[C]∥ Proceedings of the 21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003: AIAA2003-3805. |
30 | 张志勇, 陈志华, 黄振贵. 偏转头弹箭飞行特性[J]. 空气动力学学报, 2017, 35(6): 883-886. |
ZHANG Z Y, CHEN Z H, HUANG Z G. Flight characteristics of deflected nose projectile[J]. Acta Aerodynamica Sinica, 2017, 35(6): 883-886 (in Chinese). | |
31 | XU Y J, ZHIJUN WANG Z, DONG F D. Ballistic trajectory modeling for missile with deflectable nose[J]. Mechanics, 2020, 26(5): 450-456. |
32 | REN Y M, WANG S S, LI J W, et al. Aerodynamic and trajectory characteristics of a typical mortar projectile with a deflectable nose[J]. Defence Technology, 2019, 15(5): 758-767. |
33 | 吕硕, 张庆振, 郭云鹤, 等. 基于反步滑模的偏转弹头导弹姿态控制[J]. 空天防御, 2022, 5(4): 30-37. |
LYU S, ZHANG Q Z, GUO Y H, et al. Attitude control of missile with deflectable nose based on backstepping sliding mode control[J]. Air & Space Defense, 2022, 5(4): 30-37 (in Chinese). | |
34 | 郭玉洁. 偏转头弹箭的超声速流场与气动特性[D]. 南京: 南京理工大学, 2014. |
GUO Y J. Supersonic flow field and aerodynamic characteristics of deflection head projectile and arrow[D].Nanjing: Nanjing University of Science and Technology, 2014 (in Chinese). | |
35 | ZHANG B, WANG S S, CAO M Y, et al. Simulation and analysis on aerodynamic characteristics of deflectable nose[J]. Progress in Computational Fluid Dynamics, an International Journal, 2015, 15(5): 279. |
36 | WEI J F, LI X, WANG S S, et al. Aerodynamic characteristics and trajectory of projectile with a deflectable nose[J]. Applied Mechanics and Materials, 2014, 543-547: 16-19. |
37 | ZHANG B, WANG S S, CAO M Y, et al. Design and research of wind tunnel test for deflectable nose[J]. Applied Mechanics and Materials, 2013, 423-426: 2063-2067. |
38 | 孙健. 弹道修正引信仿生变体结构设计及气动性能研究[D]. 长春: 吉林大学, 2023. |
SUN J. Design and aerodynamic performance study of bionic variant of ballistic correction fuse[D]. Changchun: Jinlin University, 2023 (in Chinese). | |
39 | 刘吉磊. 基于单通道舵机的旋转非对称偏头气动控制技术[D]. 南京: 南京航空航天大学, 2021. |
LIU J L. Aerodynamics control technology of rotating asymmetric deflectable nose based on single-channel actuator[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
40 | LI J L, WU J N, YAN S Z. Conceptual design of deployment structure of morphing nose cone[J]. Advances in Mechanical Engineering, 2013, 5: 590957. |
41 | ZHAO J L, WU J N, YAN S Z. Movement analysis of flexion and extension of honeybee abdomen based on an adaptive segmented structure[J]. Journal of Insect Science, 2015, 15(1): 109. |
42 | ZHAO J L, YAN S Z, WU J N. Critical structure for telescopic movement of honey bee (insecta: Apidae) abdomen: Folded intersegmental membrane[J]. Journal of Insect Science, 2016, 16(1): 79. |
43 | ZHAO J L, YAN S Z, DENG L R, et al. Design and analysis of biomimetic nose cone for morphing of aerospace vehicle[J]. Journal of Bionic Engineering, 2017, 14(2): 317-326. |
44 | WU X B, WU Z Y, LIANG L L, et al. Bio-inspired design and performance evaluation of a novel morphing nose cone for aerospace vehicles[J]. Aerospace Science and Technology, 2023, 137: 108274. |
45 | GUO J B, ZHAO C J, SONG Z G. Discussion on research status and key technologies of morphing aircraft[J]. Journal of Physics: Conference Series, 2022, 2228(1): 012021. |
46 | BOWMAN J, SANDERS B, CANNON B, et al. Development of next generation morphing aircraft structures[C]∥ Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: AIAA2007-1730. |
47 | 陈钱, 白鹏, 尹维龙, 等. 飞机外翼段大尺度剪切式变后掠设计与分析[J]. 空气动力学学报, 2013, 31(1): 40-46. |
CHEN Q, BAI P, YIN W L, et al. Design and analysis of a variable-sweep morphing aircraft with outboard wing section large-scale shearing[J]. Acta Aerodynamica Sinica, 2013, 31(1): 40-46 (in Chinese). | |
48 | 陈钱, 白鹏, 李锋. 可变形飞行器机翼两种变后掠方式及其气动特性机理[J]. 空气动力学学报, 2012, 30(5): 658-663. |
CHEN Q, BAI P, LI F. Morphing aircraft wing variable-sweep: two practical methods and their aerodynamic characteristics[J]. Acta Aerodynamica Sinica, 2012, 30(5): 658-663 (in Chinese). | |
49 | 彭悟宇. 高超声速飞行器气动变形方案设计与外形优化方法研究[D]. 长沙: 国防科技大学, 2019. |
PENG W Y. Research on aerodynamic deformation scheme design and shape optimization method of hypersonic vehicle[D].Changsha: National University of Defense Technology, 2019 (in Chinese). | |
50 | 李惠璟. 变体飞行器气动性能分析与布局研究[D]. 西安: 西北工业大学, 2021. |
LI H J. Aerodynamic performance analysis and configuration study of morphing aircraft[D]. Xi’an: Northwestern Polytechnical University, 2021 (in Chinese). | |
51 | DAI P, YAN B B, HUANG W, et al. Design and aerodynamic performance analysis of a variable-sweep-wing morphing waverider[J]. Aerospace Science and Technology, 2020, 98: 105703. |
52 | 陈钱, 尹维龙, 白鹏, 等. 变后掠变展长翼身组合体系统设计与特性分析[J]. 航空学报, 2010, 31(3): 506-513. |
CHEN Q, YIN W L, BAI P, et al. System design and characteristics analysis of a variable-sweep and variable-span wing-body[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 506-513 (in Chinese). | |
53 | 肖洪, 郭宏伟, 张蒂, 等. 一种基于四面体单元的变形翼骨架设计与分析[J]. 航空学报, 2022, 43(7): 425391. |
XIAO H, GUO H W, ZHANG D, et al. Design and analysis of morphing wing skeleton based on tetrahedral element[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 425391 (in Chinese). | |
54 | 陈钱, 白鹏, 李锋. 飞行器变后掠过程非定常气动特性形成机理[J]. 力学学报, 2013, 45(3): 307-313. |
CHEN Q, BAI P, LI F. Study on the formation mechanisms of unsteady aerodynamic characteristics of morphing flight vehicle in sweep-varying process[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 307-313 (in Chinese). | |
55 | ZHAO J C, ZENG L F, SHAO X M. A novel prediction method for unsteady aerodynamic force on three-dimensional folding wing aircraft[J]. Aerospace Science and Technology, 2023, 137: 108287. |
56 | MOORE M, FREI D. X-29 forward swept wing aerodynamic overview[C]∥ Proceedings of the Applied Aerodynamics Conference. Reston: AIAA, 1983: AIAA1983-1834. |
57 | NEWMAN B A, SWAIM R L. Classical flight dynamics of a variable forward-sweep-wing aircraft[J]. Journal of Guidance, Control, and Dynamics, 1986, 9(3): 352-356. |
58 | 刘文法, 王旭, 米康. 一种新的变前掠翼无人机气动布局[J]. 航空学报, 2009, 30(5): 832-836. |
LIU W F, WANG X, MI K. A new aerodynamic configuration of UAV with variable forward-swept wing[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 832-836 (in Chinese). | |
59 | 刘文法, 王旭, 刘雄. 变前掠翼布局气动特性及流动机理研究[J]. 空气动力学学报, 2010, 28(5): 559-564. |
LIU W F, WANG X, LIU X. Aerodynamic characteristics and flow mechanism of the configuration with variable forward-swept wing[J]. Acta Aerodynamica Sinica, 2010, 28(5): 559-564 (in Chinese). | |
60 | 王旭, 黄萌, 任智静, 等. 前掠翼与平直翼布局气动特性的比较分析[J]. 空军工程大学学报(自然科学版), 2011, 12(4): 1-4. |
WANG X, HUANG M, REN Z J, et al. Comparison and analysis on the aerodynamic characteristics of forward swept and orthogonal wing configurations[J]. Journal of Air Force Engineering University (Natural Science Edition), 2011, 12(4): 1-4 (in Chinese). | |
61 | ZHANG K, TAIRA K. Laminar vortex dynamics around forward-swept wings[J]. Physical Review Fluids, 2022, 7(2): 024704. |
62 | 刘文法, 王旭, 米康. 前掠翼与后掠翼布局流动机理的数值研究[J]. 空军工程大学学报(自然科学版), 2008, 9(6): 11-15. |
LIU W F, WANG X, MI K. The numerical research on flow mechanism of forward-swept wing and backward-swept wing configurations[J]. Journal of Air Force Engineering University (Natural Science Edition), 2008, 9(6): 11-15 (in Chinese). | |
63 | 叶露. 变掠翼无尾飞机气动布局设计研究[J]. 飞行力学, 2019, 37(2): 36-40. |
YE L. Research of variable forward-sweep wing tailless aircraft aerodynamic configuration design[J]. Flight Dynamics, 2019, 37(2): 36-40 (in Chinese). | |
64 | CORCIONE S, CUSATI V, MEMMOLO V, et al. Impact at aircraft level of elastic efficiency of a forward-swept tailplane[J]. Aerospace Science and Technology, 2023, 140: 108461. |
65 | 刘瑜, 吕凡熹, 周进. XB-70飞行器折叠机翼总体性能分析[J]. 航空科学技术, 2022, 33(12): 47-53. |
LIU Y, LYU F X, ZHOU J. Overall performance analysis on XB-70 folding wingtip system[J]. Aeronautical Science & Technology, 2022, 33(12): 47-53 (in Chinese). | |
66 | IVANCO T, SCOTT R, LOVE M, et al. Validation of the lockheed martin morphing concept with wind tunnel testing[C]∥ Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: AIAA2007-2235. |
67 | 袁明川, 史志伟, 程克明. 折叠翼变体飞行器非定常气动特性实验研究[J]. 实验流体力学, 2013, 27(6): 14-18. |
YUAN M C, SHI Z W, CHENG K M. Research on unsteady aerodynamic characteristics of folding wing aircraft by wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6): 14-18 (in Chinese). | |
68 | 郭秋亭, 张来平, 常兴华, 等. 变形飞机动态气动特性数值模拟研究[J]. 空气动力学学报, 2011, 29(6): 744-750. |
GUO Q T, ZHANG L P, CHANG X H, et al. Numerical simulation of dynamic aerodynamic characteristics of a morphing aircraft[J]. Acta Aerodynamica Sinica, 2011, 29(6): 744-750 (in Chinese). | |
69 | 郭述臻, 郑祥明, 尹崇, 等. 折叠翼飞机的气动特性分析[J]. 航空工程进展, 2013, 4(3): 358-363. |
GUO S Z, ZHENG X M, YIN C, et al. Aerodynamic performance analysis of folding-wing aircraft[J]. Advances in Aeronautical Science and Engineering, 2013, 4(3): 358-363 (in Chinese). | |
70 | 金鼎, 张炜, 艾俊强. 折叠机翼变体飞机纵向操纵性与稳定性研究[J]. 飞行力学, 2011, 29(1): 5-8, 12. |
JIN D, ZHANG W, AI J Q. Study on longitudinal maneuverability and stability of folding wing morphing aircraft[J]. Flight Dynamics, 2011, 29(1): 5-8, 12 (in Chinese). | |
71 | 尹文强, 安然, 安玉娇. 飞翼布局折叠机翼变体飞机操稳特性研究[J]. 飞行力学, 2015, 33(6): 495-499. |
YIN W Q, AN R, AN Y J. Study on controllability and stability of flying wing and folding wing morphing aircraft[J]. Flight Dynamics, 2015, 33(6): 495-499 (in Chinese). | |
72 | 王晨, 杨洋, 沈星, 等. 用于变体飞行器的波纹板等效强度模型及其优化设计[J]. 航空学报, 2022, 43(6): 526146. |
WANG C, YANG Y, SHEN X, et al. An equivalent strength model of corrugated panel and optimization design for morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526146 (in Chinese). | |
73 | 昌敏, 孙杨, 白俊强, 等. 平角旋转机构约束的管射无人机二次折叠翼气动优化设计[J]. 航空学报, 2022, 43(11): 463-474. |
CHANG M, SUN Y, BAI J Q, et al. Aerodynamic design optimization of twice folding wing for tube-launched UAV constrained by flat-angle rotation mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 463-474 (in Chinese). | |
74 | WEISSHAAR T. Morphing aircraft technology - new shapes for aircraft design: RTO-MP-AVT-141 [R]. Indiana: Aeronautics and Astronautics Department Purdue University, 2006 |
75 | BAE J S, SEIGLER T M, INMAN D, et al. Aerodynamic and aeroelastic considerations of a variable-span morphing wing[C]∥ Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2004: AIAA2004-1726. |
76 | KHEONG B L, JACOB J. In flight aspect ratio morphing using inflatable wings[C]∥ Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: AIAA2008-425. |
77 | SAMUEL J B, PINES D. Design and testing of a pneumatic telescopic wing for unmanned aerial vehicles[J]. Journal of Aircraft, 2007, 44(4): 1088-1099. |
78 | JONES R T. The minimum drag of thin wings in frictionless flow[J]. Journal of the Aeronautical Sciences, 1951, 18(2): 75-81. |
79 | 马经忠, 肖毅, 万俊明, 等. 斜置翼飞机转掠升阻特性试验研究[J]. 气动研究与试验, 2023, 1(2): 90-95. |
MA J Z, XIAO Y, WAN J M, et al. Experimental study on lift drag characteristics of oblique wing aircraft[J]. Aerodynamic Research & Experiment, 2023, 1(2): 90-95 (in Chinese). | |
80 | VANDERVELDEN A, KROO I. The aerodynamic design of the oblique flying wing supersonic transport[R]. Washington D.C.: NASA, 1990. |
81 | 程思野, 高正红. 斜置机翼技术的研究与发展[J]. 飞行力学, 2008, 26(2): 1-4. |
CHENG S Y, GAO Z H. Research and development of oblique wing technique[J]. Flight Dynamics, 2008, 26(2): 1-4 (in Chinese). | |
82 | MCGOWAN A R, VICROY D, BUSAN R C, et al. Perspectives on highly adaptive or morphing aircraft[R]. Washington D.C.: NASA, 2009 |
83 | 陈钱, 白鹏, 尹维龙, 等. 可连续光滑偏转后缘的变弯度翼型气动特性分析[J]. 空气动力学学报, 2010, 28(1): 46-53. |
CHEN Q, BAI P, YIN W L, et al. Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge[J]. Acta Aerodynamica Sinica, 2010, 28(1): 46-53 (in Chinese). | |
84 | 王彬文, 杨宇, 钱战森, 等. 机翼变弯度技术研究进展[J]. 航空学报, 2022, 43(1): 024943. |
WANG B W, YANG Y, QIAN Z S, et al. Technical development of variable camber wing: review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 024943 (in Chinese). | |
85 | 李春鹏, 钱战森, 孙侠生. 远程民机变弯度机翼后缘外形变形矩阵气动设计[J]. 航空学报, 2023, 44(7): 127335. |
LI C P, QIAN Z S, SUN X S. Trailing edge deformation matrix aerodynamic design for long-range civil aircraft variable camber wing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 127335 (in Chinese). | |
86 | 王科雷, 周洲, 马悦文, 等. 垂直起降固定翼无人机技术发展及趋势分析[J]. 航空工程进展, 2022, 13(5): 1-13. |
WANG K L, ZHOU Z, MA Y W, et al. Development and trend analysis of vertical takeoff and landing fixed wing UAV[J]. Advances in Aeronautical Science and Engineering, 2022, 13(5): 1-13 (in Chinese). | |
87 | SHARDA S Y, NAIR M, KHAN R. Design of E-VTOL aircraft with tilt-wings[D]. India: Hindustan Institute of Technology and Science, 2022. |
88 | ROTHHAAR P M, MURPHY P C, BACON B J, et al. NASA langley distributed propulsion VTOL TiltWing aircraft testing, modeling, simulation, control, and flight test development[C]∥ Proceedings of the 14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014: AIAA2014-2999. |
89 | YAN X F, LOU B, XIE A H, et al. A review of advanced high-speed rotorcraft[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1102(1): 012006. |
90 | HA T H, LEE K, HWANG J T. Large-scale design-economics optimization of eVTOL concepts for urban air mobility[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019: AIAA2019-1218. |
91 | 季逸民. 多桨倾转机翼无人机飞行动力学建模与控制方法研究[D]. 西安: 西北工业大学, 2022. |
JI Y M. Research on flight dynamics modeling and control method of multi rotor tilt wing UAV[D]. Xi’an: Northwestern Polytechnical University, 2022 (in Chinese). | |
92 | 邓景辉. 高速直升机关键技术与发展[J]. 航空学报, doi: 10.7527/1000-6893.2023.29085 . |
DENG J H. Key technologies and development for high speed helicopters[J]. Acta Aeronautica et Astronautica Sinica, doi: 10.7527/1000-6893.2023.29085 (in Chinese). | |
93 | 程毅, 赵金瑞, 黄水林, 等. 分布式多旋翼/倾转机翼气弹耦合动特性研究[J]. 北京航空航天大学学报, doi: 10.13700/j.bh.1001-5965.2023.0623 . |
CHENG Y, ZHAO J R, HUANG S L, et al. Research on dynamic characteristics of distributed multi-rotor/tilting wing aeroelastic coupling[J]. Journal of Beijing University of Aeronautics and Astronautics, doi: 10.13700/j.bh.1001-5965.2023.0623 (in Chinese). | |
94 | 刘泽宇, 招启军, 张夏阳, 等. 倾转机翼无人倾转旋翼机飞行动力学稳定性分析[J]. 飞行力学, 2021, 39(3): 1-7. |
LIU Z Y, ZHAO Q J, ZHANG X Y, et al. Analysis of flight dynamics stability of unmanned tilt-rotor aircraft with tilting wings[J]. Flight Dynamics, 2021, 39(3): 1-7 (in Chinese). | |
95 | 史金帅, 方昕卓异, 张夏阳, 等. 倾转旋翼机过渡状态飞行速度对气动性能的影响[J]. 飞行力学, 2023, 41(2): 1-6. |
SHI J S, FANG X, ZHANG X Y, et al. Influence of flight speed in transition state on aerodynamic performance of tiltrotor aircraft[J]. Flight Dynamics, 2023, 41(2): 1-6 (in Chinese). | |
96 | 刘纪福, 马东林, 罗骏. 小型多桨倾转机翼飞行器倾转过渡特性风洞试验研究[J]. 直升机技术, 2023(1): 29-33, 40. |
LIU J F, MA D L, LUO J. Wind-tunnel testing on tilting flight mode characteristics of a small distributed propulsion VTOL tilt-wing aircraft[J]. Helicopter Technique, 2023(1): 29-33, 40 (in Chinese). | |
97 | 袁长龙, 弓升, 于萍, 等. 短距起飞/垂直降落飞机外流场特性研究[J]. 燃气涡轮试验与研究, 2016, 29(6): 10-15. |
YUAN C L, GONG S, YU P, et al. External flow field performance study of STOVL aircraft[J]. Gas Turbine Experiment and Research, 2016, 29(6): 10-15 (in Chinese). | |
98 | 顾韵. 一种发动机可变进气道的设计及优化[D]. 天津: 中国民航大学, 2021. |
GU Y. Design and optimization of an engine variable intake port[D].Tianjin: Civil Aviation University of China, 2021 (in Chinese). | |
99 | WEIR L, SANDERS B, VACHON J. A new design concept for supersonic axisymmetric inlets[C]∥ Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002: AIAA2002-3775. |
100 | 滕健, 袁化成. 一种轴对称变几何进气道设计方法[J]. 航空动力学报, 2013, 28(1): 96-103. |
TENG J, YUAN H C. Design methodology of axisymmetric variable geometry inlet[J]. Journal of Aerospace Power, 2013, 28(1): 96-103 (in Chinese). | |
101 | MARU Y, TANATSUGU N, SATO T, et al. Multi-row disk arrangement concept for spike of axisymmetric air inlet[C]∥ Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2004: AIAA2004-3407. |
102 | 宁啸天, 辜天来, 田亚洲, 等. 一种轴对称变几何进气道气动设计及性能分析[J]. 固体火箭技术, 2021, 44(6): 783-792. |
NING X T, GU T L, TIAN Y Z, et al. Aerodynamic design and performance analysis of an axisymmetric variable geometry inlet[J]. Journal of Solid Rocket Technology, 2021, 44(6): 783-792 (in Chinese). | |
103 | 金志光, 张堃元. 宽马赫数范围高超声速进气道伸缩唇口式变几何方案[J]. 宇航学报, 2010, 31(5): 1503-1510. |
JIN Z G, ZHANG K Y. A variable geometry scramjet inlet with a translating cowl operating in a large Mach number range[J]. Journal of Astronautics, 2010, 31(5): 1503-1510 (in Chinese). | |
104 | 朱呈祥, 黄国平, 尤延铖, 等. 内乘波式进气道与典型侧压式进气道的性能对比[J]. 推进技术, 2011, 32(2): 151-158. |
ZHU C X, HUANG G P, YOU Y C, et al. Performance comparison between internal waverider inlet and typical sidewall compression inlet[J]. Journal of Propulsion Technology, 2011, 32(2): 151-158 (in Chinese). | |
105 | 戎佳欣. 自适应鼓包进气道结构的柔性蒙皮技术研究[D]. 南京: 南京航空航天大学, 2018. |
RONG J X. Study on flexible skin technology of adaptive bulging inlet structure[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
106 | 周伟, 马培洋, 郭正, 等. 基于翼尖链翼的组合固定翼无人机研究[J]. 航空学报, 2022, 43(9): 325946. |
ZHOU W, MA P Y, GUO Z, et al. Research of combined fixed-wing UAV based on wingtip chained[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 325946 (in Chinese). | |
107 | 安朝, 谢长川, 孟杨, 等. 多体组合式无人机飞行力学稳定性分析及增稳控制研究[J]. 工程力学, 2021, 38(11): 248-256. |
AN C, XIE C C, MENG Y, et al. Flight dynamics and stable control analyses of multi-body aircraft[J]. Engineering Mechanics, 2021, 38(11): 248-256 (in Chinese). | |
108 | 杜万闪, 周洲, 拜昱, 等. 组合式飞行器多体动力学建模与飞行力学特性[J]. 兵工学报, 2023, 44(8): 2245-2262. |
DU W S, ZHOU Z, BAI Y, et al. Study on multibody dynamics modeling and flight dynamic characteristics of combined aircraft[J]. Acta Armamentarii, 2023, 44(8): 2245-2262 (in Chinese). | |
109 | WU M J, SHI Z W, XIAO T H, et al. Effect of wingtip connection on the energy and flight endurance performance of solar aircraft[J]. Aerospace Science and Technology, 2021, 108: 106404. |
110 | ZHOU W, MA P Y, WEI B B, et al. Experimental study on aerodynamic characteristics of fixed-wing UAV air docking[J]. Aerospace Science and Technology, 2023, 137: 108257. |
111 | 杨延平, 张子健, 应培, 等. 集群组合式柔性无人机:创新、机遇及技术挑战[J]. 飞行力学, 2021, 39(2): 1-9, 15. |
YANG Y P, ZHANG Z J, YING P, et al. Flexible modular swarming UAV: Innovative, opportunities, and technical challenges[J]. Flight Dynamics, 2021, 39(2): 1-9, 15 (in Chinese). | |
112 | 张旭辉, 解春雷, 刘思佳, 等. 智能变形飞行器发展需求及难点分析[J]. 航空学报, doi: 10.7527/1000-6893.2023.29302 . |
ZHANG X H, XIE C L, LIU S J, al e. Development needs and difficulty analysis for smart morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, doi: 10.7527/1000-6893.2023. 29302 (in Chinese). | |
113 | 马高杰, 安刚, 史佑民, 等. 民用飞机高升力系统先进技术及发展[J]. 航空学报, 2023, 44(): 6-19. |
MA G J, AN G, SHI Y M, et al. Advanced technology and development of civil aircraft high lift system[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(Sup 1): 6-19 (in Chinese). | |
114 | LIU C Z, BAI P, TIAN J W, et al. Nonlinearity analysis of increase in lift of double swept waverider[J]. AIAA Journal, 2020, 58(1): 304-314. |
115 | FENG C, CHEN S S, YUAN W, et al. A wide-speed-range aerodynamic configuration by adopting wave-riding-strake wing[J]. Acta Astronautica, 2023, 202: 442-452. |
116 | 陈树生, 张兆康, 李金平, 等. 一种宽速域乘波三角翼气动布局设计[J], 航空学报, 2023, 44(24): 128441. |
CHEN S S, ZHANG Z K, LI J P, et al. A wide-speed aerodynamic layout adopting waverider-delta wing [J].Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 128441 (in Chinese). | |
117 | ZHAO Z T, HUANG W, YAN L, et al. An overview of research on wide-speed range waverider configuration[J]. Progress in Aerospace Sciences, 2020, 113: 100606. |
118 | 谢赞, 周灿灿, 赵振涛, 等. 宽速域飞行器发展及研究现状综述[J]. 空天技术, 2022(4): 28-39, 86. |
XIE Z, ZHOU C C, ZHAO Z T, et al. Overview of development and research status of wide speed range aircraft[J]. Aerospace Technology, 2022(4): 28-39, 86 (in Chinese). | |
119 | DAI P, FENG D Z, ZHAO J Q, et al. Asymmetric integral barrier Lyapunov function-based dynamic surface control of a state-constrained morphing waverider with anti-saturation compensator[J]. Aerospace Science and Technology, 2022, 131: 107975. |
120 | DAI P, YAN B B, LIU R F, et al. Modeling and nonlinear model predictive control of a variable-sweep-wing morphing waverider[J]. IEEE Access, 2021, 9: 63510-63520. |
121 | DAI P, YAN B B, HAN T, et al. Barrier Lyapunov function based model predictive control of a morphing waverider with input saturation and full-state constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 3071-3081. |
122 | KANAT Ö Ö, KARATAY E, KÖSE O, et al. Combined active flow and flight control systems design for morphing unmanned aerial vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(14): 5393-5402. |
123 | LÜ X Z, YUAN C, BAO W M, et al. Numerical and experimental investigation of aerodynamic heat control of leading edge of hypersonic vehicle’s flexible skin[J]. Science China Information Sciences, 2022, 65(10): 1-14. |
124 | 曾品棚, 陈树生, 李金平, 等. 减阻杆与环形喷流组合构型钝头降热数值模拟[J]. 航空学报, 2023, 44(22): 124-135. |
ZENG P P, CHEN S S, LI J P, et al. Numerical simulation of heat reduction on blunt-headed bodies by combined scheme of drag reduction spike and annular jets[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 124-135 (in Chinese). | |
125 | 朱广生, 姚世勇, 段毅. 高速飞行器减阻降热流动控制技术研究进展及工程应用[J]. 航空学报, 2023, 44(15): 9-24. |
ZHU G S, YAO S Y, DUAN Y. Research progress and engineering application of flow control technology for drag and heat reduction of high-speed vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 9-24 (in Chinese). | |
126 | 张良阳, 李占科, 韩海洋. 微型无人机栖息设计技术综述[J]. 航空学报, 2023, 44(12): 24-49. |
ZHANG L Y, LI Z K, HAN H Y. A review of perching technology of micro-UAV[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 24-49 (in Chinese). | |
127 | PETERS C, ROTH B, CROSSLEY W, et al. Use of design methods to generate and develop missions for morphing aircraft[C]∥ Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2002: AIAA2002-5468. |
128 | TALLEY D, SCHELLPFEFFER N, JOHNSON C, et al. Methodology for the mission requirement determination and conceptual design of a morphing UCAV[C]∥ Proceedings of the AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit. Reston: AIAA, 2004: AIAA2004-6597. |
129 | FROMMER J, CROSSLEY W. Enabling continuous optimization for sizing morphing aircraft concepts[C]∥ Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005: AIAA2005-816. |
130 | ZHANG Y L, WU H Y, ZHAO J L, et al. Design and performance analysis of morphing nose cone driven by a novel bionic parallel mechanism for aerospace vehicle[J]. Aerospace Science and Technology, 2023, 139: 108365. |
131 | NAMGOONG H, CROSSLEY W A, LYRINTZIS A S. Aerodynamic optimization of a morphing airfoil using energy as an objective[J]. AIAA Journal, 2007, 45(9): 2113-2124. |
132 | LIU B, LIANG H A, HAN Z H, et al. Surrogate-based aerodynamic shape optimization of a morphing wing considering a wide Mach-number range[J]. Aerospace Science and Technology, 2022, 124: 107557. |
133 | AUTERI F, SAVINO A, ZANOTTI A, et al. Experimental evaluation of the aerodynamic performance of a large-scale high-lift morphing wing[J]. Aerospace Science and Technology, 2022, 124: 107515. |
134 | HUANG C, YANG C, WU Z G, et al. Variations of flutter mechanism of a span-morphing wing involving rigid-body motions[J]. Chinese Journal of Aeronautics, 2018, 31(3): 490-497. |
135 | 喻世杰, 周兴华, 黄锐. 变弯度机翼参数化气动弹性建模与颤振特性分析[J]. 航空学报, 2023, 44(8): 227346. |
YU S J, ZHOU X H, HUANG R. Parametric aeroelastic modeling and flutter characteristic analysis of variable camber wing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 227346 (in Chinese). | |
136 | ZHANG W, LV S L, NI Y G. Parametric aeroelastic modeling based on component modal synthesis and stability analysis for horizontally folding wing with hinge joints[J]. Nonlinear Dynamics, 2018, 92(2): 169-179. |
137 | CHEUNG R C, REZGUI D, COOPER J E, et al. Testing of folding wing-tip for gust load alleviation in high aspect ratio wing[C]∥ Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019: AIAA2019-1863. |
138 | 陈钱, 白鹏, 陈农, 等. 滑动蒙皮变后掠无人机非定常气动特性研究[J]. 空气动力学学报, 2011, 29(5): 645-650. |
CHEN Q, BAI P, CHEN N, et al. Investigation on the unsteady aerodynamic characteristics of sliding-skin variable-sweep morphing unmanned aerial vehicle[J]. Acta Aerodynamica Sinica, 2011, 29(5): 645-650 (in Chinese). | |
139 | ZENG L F, LIU L, SHAO X M, et al. Mechanism analysis of hysteretic aerodynamic characteristics on variable-sweep wings[J]. Chinese Journal of Aeronautics, 2023, 36(5): 212-222. |
140 | 吕侦军, 卢志毅, 陈庆民, 等. 高速变翼面飞行器研究现状及关键气动技术[J]. 空天技术, 2022(6): 49-56, 76. |
LYU Z J, LU Z Y, CHEN Q M, et al. Research status and key aerodynamic technology of high speed variable wing vehicle[J]. Aerospace Technology, 2022(6): 49-56, 76 (in Chinese). | |
141 | HUANG R, HU H Y, ZHAO Y H. Nonlinear reduced-order modeling for multiple-input/multiple-output aerodynamic systems[J]. AIAA Journal, 2014, 52(6): 1219-1231. |
142 | HUANG R, LI H K, HU H Y, et al. Open/closed-loop aeroservoelastic predictions via nonlinear, reduced-order aerodynamic models[J]. AIAA Journal, 2015, 53(7): 1812-1824. |
143 | 寇家庆. 非定常气动力建模与流场降阶方法研究[D]. 西安: 西北工业大学, 2018. |
KOU J Q. Study on unsteady aerodynamic modeling and flow field reduction method[D].Xi’an: Northwestern Polytechnical University, 2018 (in Chinese). | |
144 | 赵嘉墀, 王天琪, 曾丽芳, 等. 基于GRU的扑翼非定常气动特性快速预测[J]. 浙江大学学报(工学版), 2023, 57(6): 1251-1256. |
ZHAO J C, WANG T Q, ZENG L F, et al. Rapid prediction of unsteady aerodynamic characteristics of flapping wing based on GRU[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(6): 1251-1256 (in Chinese). | |
145 | 黄锐, 胡海岩. 飞行器非线性气动伺服弹性力学[J]. 力学进展, 2021, 51(3): 428-466. |
HUANG R, HU H Y. Nonlinear aeroservoelasticity of aircraft[J]. Advances in Mechanics, 2021, 51(3): 428-466 (in Chinese). | |
146 | LIVNE E. Aircraft active flutter suppression: state of the art and technology maturation needs[J]. Journal of Aircraft, 2018, 55(1): 410-452. |
147 | 张桢锴, 贾思嘉, 宋晨, 等. 柔性变弯度后缘机翼的风洞试验模型优化设计[J]. 航空学报, 2022, 43(3): 226071. |
ZHANG Z K, JIA S J, SONG C, et al. Optimum design of wind tunnel test model for compliant morphing trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 226071 (in Chinese). | |
148 | NEAL D, FARMER J, INMAN D. Development of a morphing aircraft model for wind tunnel experimentation[C]∥ Proceedings of the 47th AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006: AIAA2006-2141. |
149 | 刘志涛, 蒋永, 聂博文, 等. 弯折翼尖对飞翼布局飞机气动特性影响[J]. 航空学报, 2021, 42(6): 124179. |
LIU Z T, JIANG Y, NIE B W, et al. Effect of bendable wing tip on aerodynamic characteristics of flying-wing configuration aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124179 (in Chinese). | |
150 | PANAGIOTOU P, ANTONIOU S, YAKINTHOS K. Cant angle morphing winglets investigation for the enhancement of the aerodynamic, stability and performance characteristics of a tactical Blended-Wing-Body UAV[J]. Aerospace Science and Technology, 2022, 123: 107467. |
151 | 魏其. 变体飞行器多物理场耦合分析[D]. 西安: 西北工业大学, 2017. |
WEI Q. Multidiscipline coupled-field analysis of morphing aircraft[D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese). | |
152 | ZHANG T T, WANG Z G, HUANG W, et al. A review of parametric approaches specific to aerodynamic design process[J]. Acta Astronautica, 2018, 145: 319-331. |
153 | LIU D, CHEN P C, ZHANG Z C, et al. Continuous dynamic simulation for morphing wing aeroelasticity[C]∥ Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009: AIAA2009-2572. |
154 | 王荣, 白鹏. 基于FFD与网格重构的飞翼无人机外形优化设计[J]. 航空科学技术, 2018, 29(10): 43-47. |
WANG R, BAI P. Aerodynamic design optimization for a flying-wing UAV based on FFD and grid reconstruction[J]. Aeronautical Science & Technology, 2018, 29(10): 43-47 (in Chinese). | |
155 | ROTH B, CROSSLEY W. Application of optimization techniques in the conceptual design of morphing aircraft[C]∥ Proceedings of the AIAA's 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Forum. Reston: AIAA, 2003: AIAA2003-6733. |
156 | BASHIR M, LONGTIN MARTEL S, BOTEZ R M, et al. Aerodynamic shape optimization of camber morphing airfoil based on black widow optimization[C]∥ Proceedings of the AIAA SCITECH 2022 Forum. Reston: AIAA, 2022: AIAA2022-2575. |
157 | NEGAHBAN M H, BASHIR M, BOTEZ R M. Aerodynamic optimization of a novel synthetic trailing edge and chord elongation morphing: application to the UAS-S45 airfoil[C]∥ Proceedings of the AIAA SCITECH 2023 Forum. Reston: AIAA, 2023: AIAA2023-1582. |
158 | LYU Z J, MARTINS J R R A. Aerodynamic shape optimization of an adaptive morphing trailing-edge wing[J]. Journal of Aircraft, 2015, 52(6): 1951-1970. |
159 | BURDETTE D A, MARTINS J R R A. Impact of morphing trailing edges on mission performance for the common research model[J]. Journal of Aircraft, 2019, 56(1): 369-384. |
160 | 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 522480. |
CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522480 (in Chinese). | |
161 | WANG Y Q, DENG L, WAN Y B, et al. An intelligent method for predicting the pressure coefficient curve of airfoil-based conditional generative adversarial networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(7): 3538-3552. |
162 | JIN X W, CAI S Z, LI H, et al. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951. |
163 | 战庆亮, 刘鑫, 白春锦, 等. 考虑物理方程约束的机器学习流场时程表征方法[J]. 工程力学, doi: 10.6052/j.issn.1000-4750.2022.12.1067 . |
ZHAN Q L, LIU X, BAI C J, et al. Physical constrained flow representation model using machine learning for flow time history[J]. Engineering Mechanics, doi: 10.6052/j.issn.1000-4750.2022.12.1067 (in Chinese). | |
164 | LI R Z, ZHANG Y F, CHEN H X. Transfer learning from two-dimensional supercritical airfoils to three-dimensional transonic swept wings[J]. Chinese Journal of Aeronautics, 2023, 36(9): 96-110. |
165 | CHEN X Y, LI C N, GONG C L, et al. A study of morphing aircraft on morphing rules along trajectory[J]. Chinese Journal of Aeronautics, 2021, 34(7): 232-243. |
166 | 杜厦, 昂海松. 变体平尾翼型气动外形设计方法[J]. 南京航空航天大学学报, 2012, 44(6): 780-785. |
DU S, ANG H S. Airfoil aerodynamic optimization method of morphing horizontal stabilizer[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(6): 780-785 (in Chinese). | |
167 | 高飞云. 新概念变形飞行器建模与飞行方案优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
GAO F Y. Modeling and flight scheme optimization design of new concept morphing aircraft[D].Harbin: Harbin Institute of Technology, 2014 (in Chinese). | |
168 | 吕吉婵. 变后掠翼身组合体的最佳变后掠规律研究[D]. 南昌: 南昌航空大学, 2016. |
LÜ/LV/LU/LYU) J C. Study on the optimal law of variable sweep wing-body combination[D].Nanchang: Nanchang Hangkong University, 2016 (in Chinese). | |
169 | GONG L G, WANG Q, HU C H, et al. Switching control of morphing aircraft based on Q-learning[J]. Chinese Journal of Aeronautics, 2020, 33(2): 672-687. |
170 | XU W F, LI Y H, PEI B B, et al. Coordinated intelligent control of the flight control system and shape change of variable sweep morphing aircraft based on dueling-DQN[J]. Aerospace Science and Technology, 2022, 130: 107898. |
171 | CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 220-246. |
172 | SAMAREH J, CHWALOWSKI P, HORTA L, et al. Integrated aerodynamic/structural/dynamic analyses of aircrafts with large shape changes[C]∥ Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: AIAA2007-2346. |
173 | AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682. |
174 | 詹玖榆, 周兴华, 黄锐. 基于流形切空间插值的折叠翼参数化气动弹性建模[J]. 力学学报, 2021, 53(4): 1103-1113. |
ZHAN J Y, ZHOU X H, HUANG R. Parametric aeroelastic modeling of folding wing based on manifold tangent space interpolation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1103-1113 (in Chinese). | |
175 | HUANG R, YANG Z J, YAO X J, et al. Parameterized modeling methodology for efficient aeroservoelastic analysis of a morphing wing[J]. AIAA Journal, 2019, 57(12): 5543-5552. |
176 | 李铭琦. 基于热流固多场耦合分析的剪切式滑动蒙皮变后掠翼设计与优化[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
LI M Q. Design and optimization of variable swept wing with shear sliding skin based on heat flow-solid multi-field coupling analysis[D].Harbin: Harbin Institute of Technology, 2021 (in Chinese). | |
177 | 任浩源, 王毅, 王亮, 等. 基于热/力试验的折叠舵连接刚度与颤振分析[J]. 航空学报, 2023, 44(14): 183-199. |
REN H Y, WANG Y, WANG L, et al. Connection stiffness and flutter analysis of folding fin based on thermal-mechanical test[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 183-199 (in Chinese). | |
178 | 武宇飞, 龙腾, 史人赫, 等. 跨域变体飞行器气动力热非层次多模型融合降阶方法[J]. 航空学报, 2023, 44(21): 528259. |
WU Y F, LONG T, SHI R H, et al. Non⁃hierarchical multi⁃model fusion order reduction based on aerodynamic and aerothermodynamic characteristics for cross⁃domain morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528259 (in Chinese). |
[1] | Yanyan LUO, Shuo YANG, Xiaosong PAN, Xuhuai ZHAO, Li ZHANG. Signal reflection suppression and optimized design of high⁃speed connectors for aerospace applications [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 328937-328937. |
[2] | Jinzhao DAI, Haixin CHEN. Optimization design method of three⁃dimensional wave cancellation biplane derived by shock⁃wave morphology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 628942-628942. |
[3] | Siji WANG, Yuwei ZHANG, Kaiming HUANG, Biao LYU, Haifeng ZHAO, Hu WANG, Mingfu LIAO. An optimization method for helicopter power turbine rotor system based on improved particle swarm optimization algorithm [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 228608-228608. |
[4] | Qian YANG, Haoran ZHENG, Xianda CHENG, Wei DONG. Optimization design method for hot air anti⁃icing system based on bleed air control [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729285-729285. |
[5] | He ZHANG, Qingyang LIU, Liugang LI, Jingyao XU. Multibody system unsteady simulation technology for morphing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729421-729421. |
[6] | Weihong ZHANG, Han ZHOU, Shaoying LI, Jihong ZHU, Lu ZHOU. Material⁃structure integrated design for high⁃performance aerospace thin⁃walled component [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 627428-627428. |
[7] | Yifu CHEN, Yuhang MA, Qingsheng LAN, Weiping SUN, Yayun SHI, Tihao YANG, Junqiang BAI. Uncertainty analysis and gradient optimization design of airfoil based on polynomial chaos expansion method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127446-127446. |
[8] | Shijie YU, Xinghua ZHOU, Rui HUANG. Parametric aeroelastic modeling and flutter characteristic analysis of variable camber wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 227346-227346. |
[9] | Chaoyu LIU, Feng QU, Di SUN, Chuanzhen LIU, Zhansen QIAN, Junqiang BAI. Discretized adjoint based aerodynamic optimization design for hypersonic osculating-cone waverider [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126664-126664. |
[10] | Weimin BAO. A review of reusable launch vehicle technology development [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629555-629555. |
[11] | Xuhui ZHANG, Chunlei XIE, Sijia LIU, Ming YAN, Siyuan XING. Development needs and difficulty analysis for smart morphing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 529302-529302. |
[12] | Yufei WU, Teng LONG, Renhe SHI, Yao ZHANG. Non⁃hierarchical multi⁃model fusion order reduction based on aerodynamic and aerothermodynamic characteristics for cross⁃domain morphing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528259-528259. |
[13] | Jiaqi HE, Weida WU, Yangjun LUO. A robust shape control method for space-borne antenna reflectors based on P-CS uncertainty quantification model and digital twin [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 328343-328343. |
[14] | Jiehua TIAN, Di SUN, Feng QU, Junqiang BAI. Airfoil parameterization method based on CST⁃GAN [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 128280-128280. |
[15] | Songcheng JIANG, Hui YANG, Yan WANG, Hong XIAO, Yongbin LIU, Chuanyang LI. Analysis of mechanical characteristics of flexible skin with tunable Poisson's ratio for morphing wing [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 227748-227748. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341