Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (7): 130987.doi: 10.7527/S1000-6893.2024.30987
• Fluid Mechanics and Flight Mechanics • Previous Articles
Yihao XU1(), Pengcheng DONG2, Junchao ZHENG1, Chunqing TAN1, Hailong TANG3
Received:
2024-07-23
Revised:
2024-08-20
Accepted:
2024-09-23
Online:
2024-10-11
Published:
2024-10-11
Contact:
Yihao XU
E-mail:xuyihao@mail.tsinghua.edu.cn
Supported by:
CLC Number:
Yihao XU, Pengcheng DONG, Junchao ZHENG, Chunqing TAN, Hailong TANG. Overall performance optimization method of adaptive cycle propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 130987.
Table 5
Fitting functions’ critical parameters of two methods in supersonic cruise condition during double outer bypass mode
参数 | 方法1 | 方法2 |
---|---|---|
均方根误差RMSE | 0.064 6 | |
五次方系数 | 5.243 0×10-18 | 2.403 2×10-18 |
四次方系数 | -1.430 1×10-13 | -6.595 9×10-14 |
三次方系数 | 1.531 1×10-9 | 7.081 6×10-10 |
二次方系数 | -7.978 1×10-6 | -3.664 1×10-6 |
一次方系数 | 0.020 0 | 0.009 0 |
常数项 | -17.785 2 | -6.755 1 |
决定系数R2 | 1.000 0 | 0.998 5 |
Table 6
Fitting functions’ critical parameters of two methods in supersonic cruise condition during triple outer bypass mode
参数 | 方法1 | 方法2 |
---|---|---|
均方根误差RMSE | 0.010 9 | |
五次方系数 | 3.785 2×10-18 | 5.215 8×10-18 |
四次方系数 | -9.712 4×10-14 | -1.291 3×10-13 |
三次方系数 | 9.874 7×10-10 | 1.267 4×10-9 |
二次方系数 | -4.949 8×10-6 | -6.141 9×10-6 |
一次方系数 | 0.012 2 | 0.014 7 |
常数项 | -10.579 5 | -12.542 9 |
决定系数R2 | 0.999 9 | 0.999 9 |
Table 7
Optimal throttling line fitting functions’ critical parameters of two methods in supersonic cruise condition
参数 | 方法1 | 方法2 |
---|---|---|
均方根误差RMSE | 0.010 2 | |
五次方系数 | 2.517 7×10-18 | 3.144 8×10-18 |
四次方系数 | -6.580 6×10-14 | -8.055 7×10-14 |
三次方系数 | 6.801 9×10-10 | 8.150 7×10-10 |
二次方系数 | -3.456 0×10-6 | -4.052 9×10-6 |
一次方系数 | 0.008 6 | 0.009 9 |
常数项 | -7.162 1 | -8.199 1 |
决定系数R2 | 0.999 7 | 0.999 9 |
Table 8
Critical parameters of fitting functions of two methods in subsonic cruise condition during double outer bypass mode
参数 | 方法1 | 方法2 |
---|---|---|
均方根误差RMSE | 0.013 0 | |
五次方系数 | -2.414 5×10-17 | -2.208 5×10-17 |
四次方系数 | 2.957 8×10-13 | 2.809 8×10-13 |
三次方系数 | -1.407 6×10-9 | -1.388 2×10-9 |
二次方系数 | 3.336 9×10-6 | 3.411 2×10-6 |
一次方系数 | -0.004 1 | -0.004 3 |
常数项 | 3.223 1 | 3.380 9 |
决定系数R2 | 0.999 0 | 0.999 6 |
Table 9
Critical parameters of fitting functions of two methods in subsonic cruise condition during triple outer bypass mode
参数 | 方法1 | 方法2 |
---|---|---|
均方根误差RMSE | 0.007 8 | |
五次方系数 | -5.796 3×10-17 | -3.058 3×10-17 |
四次方系数 | 7.152 9×10-13 | 3.752 1×10-13 |
三次方系数 | -3.511 4×10-9 | -1.838 3×10-9 |
二次方系数 | 8.625 1×10-6 | 4.552 8×10-6 |
一次方系数 | -0.010 6 | -0.005 7 |
常数项 | 6.227 3 | 3.898 7 |
决定系数R2 | 1.000 0 | 1.000 0 |
Table 10
Optimal throttling line critical parameters of fitting functions of two methods in subsonic cruise condition
参数 | 方法1 | 方法2 |
---|---|---|
均方根误差RMSE | 0.007 5 | |
五次方系数 | -1.662 8×10-17 | 1.725 5×10-18 |
四次方系数 | 2.400 5×10-13 | 3.871 9×10-15 |
三次方系数 | -1.367 3×10-9 | -1.693 9×10-10 |
二次方系数 | 3.885 0×10-6 | 8.927 9×10-7 |
一次方系数 | -0.005 5 | -0.001 8 |
常数项 | 4.053 2 | 2.274 7 |
决定系数R2 | 0.999 1 | 0.999 1 |
Table 12
Curved surface critical parameters of fitting functions of two methods for velocity-altitude characteristics below Mach number 0.9
多项式系数 | 方法1 | 方法2 |
---|---|---|
RMSE | 0 | |
p00 | 17 210.000 | 17 210.000 |
p10 | 1 226.000 | 1 226.000 |
p01 | -1 874.000 | -1 874.000 |
p20 | 1 850.000 | 1 850.000 |
p11 | 69.680 | 69.680 |
p02 | 54.240 | 54.240 |
p30 | 17 550.000 | 17 550.000 |
p21 | -937.000 | -937.000 |
p12 | -53.920 | -53.920 |
p03 | 8.531 | 8.531 |
p40 | -13 710.000 | -13 710.000 |
p31 | 133.300 | 133.300 |
p22 | -64.430 | -64.430 |
p13 | 14.850 | 14.850 |
p04 | -1.323 | -1.323 |
p50 | 205.100 | 205.100 |
p41 | 1 453.000 | 1 453.000 |
p32 | -194.700 | -194.700 |
p23 | 16.510 | 16.510 |
p14 | -1.088 | -1.088 |
p05 | 0.057 | 0.057 |
R2 | 0.999 9 | 0.999 9 |
1 | 陈大光, 张津. 飞机-发动机性能匹配与优化[M]. 北京: 北京航空航天大学出版社, 1990. |
CHEN D G, ZHANG J. Aircraft-engine performance matching and optimization[M]. Beijing: Beihang University Press, 1990 (in Chinese). | |
2 | ALLAN R. General Electric Company variable cycle engine technology demonstrator programs[C]∥Proceedings of the 15th Joint Propulsion Conference. Reston: AIAA, 1979. |
3 | 陈敏, 张纪元, 唐海龙, 等. 自适应循环发动机总体设计技术探讨[J]. 航空动力学报, 2022, 37(10): 2046-2058. |
CHEN M, ZHANG J Y, TANG H L, et al. Discussion on overall performance design technology of adaptive cycle engine[J]. Journal of Aerospace Power, 2022, 37(10): 2046-2058 (in Chinese). | |
4 | CHEN M, ZHANG J Y, TANG H L. Performance analysis of a three-stream adaptive cycle engine during throttling[J]. International Journal of Aerospace Engineering, 2018, 2018: 9237907. |
5 | General Electric Company. XA100 adaptive cycle engine: A new era of combat propulsion [EB/OL]. (2024-02-02) [2024-07-23]. . |
6 | ZHENG J C, CHEN M, TANG H L. Matching mechanism analysis on an adaptive cycle engine[J]. Chinese Journal of Aeronautics, 2017, 30(2): 706-718. |
7 | MENG X, ZHU Z L, CHEN M, et al. A matching problem between the front fan and aft fan stages in adaptive cycle engines with convertible fan systems[J]. Energies, 2021, 14(4): 840. |
8 | ZHENG J C, TANG H L, CHEN M, et al. Equilibrium running principle analysis on an adaptive cycle engine[J]. Applied Thermal Engineering, 2018, 132: 393-409. |
9 | 李斌, 陈敏, 朱之丽, 等. 自适应循环发动机不同工作模式稳态特性研究[J]. 推进技术, 2013, 34(8): 1009-1015. |
LI B, CHEN M, ZHU Z L, et al. Steady performance investigation on various modes of an adaptive cycle aero-engine[J]. Journal of Propulsion Technology, 2013, 34(8): 1009-1015 (in Chinese). | |
10 | 郑俊超, 唐海龙, 陈敏, 等. 自适应循环发动机典型工况不同工作模式性能对比研究[J]. 工程热物理学报, 2022, 43(7): 1743-1750. |
ZHENG J C, TANG H L, CHEN M, et al. Operating modes performance comparison research in typical working conditions on an adaptive cycle engine[J]. Journal of Engineering Thermophysics, 2022, 43(7): 1743-1750 (in Chinese). | |
11 | GRÖNSTEDT U T J, PILIDIS P. Control optimization of the transient performance of the selective bleed variable cycle engine during mode transition[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(1): 75-81. |
12 | 郑俊超, 罗艺伟, 唐海龙, 等. 自适应循环发动机模式转换过渡态控制规律设计方法研究[J]. 推进技术, 2022, 43(11): 210607. |
ZHENG J C, LUO Y W, TANG H L, et al. Design method research of mode switch transient control schedule on adaptive cycle engine[J]. Journal of Propulsion Technology, 2022, 43(11): 210607 (in Chinese). | |
13 | XU Y H, TANG H L, CHEN M. Design method of optimal control schedule for the adaptive cycle engine steady-state performance[J]. Chinese Journal of Aeronautics, 2022, 35(4): 148-164. |
14 | LYU Y, TANG H L, CHEN M. A study on combined variable geometries regulation of adaptive cycle engine during throttling[J]. Applied Sciences, 2016, 6(12): 374. |
15 | ZHENG J C, TANG H L, CHEN M. Optimal matching control schedule research on an energy system[J]. Energy Procedia, 2019, 158: 1685-1693. |
16 | 韩佳, 王靖凯, 梁彩云, 等. 三外涵变循环发动机推力性能优化计算及分析[J]. 航空动力学报, 2018, 33(2): 338-344. |
HAN J, WANG J K, LIANG C Y, et al. Thrust performance optimization calculation and analysis of triple bypass variable cycle engine[J]. Journal of Aerospace Power, 2018, 33(2): 338-344 (in Chinese). | |
17 | 杨宇飞. 自适应循环发动机建模及控制规律研究[D]. 南京: 南京航空航天大学, 2017. |
YANG Y F. Research on modeling and control law of adaptive cycle engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese). | |
18 | JIA L Y, CHEN Y C, CHENG R H, et al. Designing method of acceleration and deceleration control schedule for variable cycle engine[J]. Chinese Journal of Aeronautics, 2021, 34(5): 27-38. |
19 | 周红. 变循环发动机特性分析及其与飞机一体化设计研究[D]. 西安: 西北工业大学, 2016. |
ZHOU H. Investigation on the variable cycle engine characteristics and integration design with aircraft[D]. Xi’an: Northwestern Polytechnical University, 2016 (in Chinese). | |
20 | 马松, 谭建国, 王光豪, 等. 基于飞发一体化的自适应循环发动机参数优化研究[J]. 推进技术, 2018, 39(8): 1703-1711. |
MA S, TAN J G, WANG G H, et al. Study on characteristics optimization of adaptive cycle engine based on aircraft-engine integrated analysis[J]. Journal of Propulsion Technology, 2018, 39(8): 1703-1711 (in Chinese). | |
21 | 王一凡, 陈浩颖, 张海波. 面向巡航任务的自适应循环发动机进/发匹配[J]. 航空学报, 2024, 45(2): 128637. |
WANG Y F, CHEN H Y, ZHANG H B. Inlet/engine matching of adaptive cycle engine for cruise mission[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128637 (in Chinese). | |
22 | 许哲文, 唐海龙, 陈敏, 等. 基于混合维度仿真的自适应循环发动机引射喷管安装性能研究[J]. 推进技术, 2023, 44(9): 2207083. |
XU Z W, TANG H L, CHEN M, et al. Installed performance of adaptive cycle engine ejector nozzle based on multi-fidelity simulation[J]. Journal of Propulsion Technology, 2023, 44(9): 2207083 (in Chinese). | |
23 | RICHEY G K, SURBER L E, BERRIER B L. Airframe-propulsion integration for fighter aircraft[C]∥Proceedings of the 21st Aerospace Sciences Meeting. Reston: AIAA, 1983. |
24 | HALE A L, DAVIS M, SIRBAUGH J. A numerical simulation capability for analysis of aircraft inlet-engine compatibility[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(3): 473-481. |
25 | BEALE D, COLLIER M S. Validation of a free-jet technique for evaluating inlet-engine compatibility[C]∥Proceedings of the 25th Joint Propulsion Conference. Reston: AIAA, 1989. |
26 | ANDERSON J. Airframe/propulsion integration of supersonic cruise vehicles[C]∥Proceedings of the 26th Joint Propulsion Conference. Reston: AIAA, 1990. |
27 | WILSON J, WRIGHT B. Airframe/engine integration with variable cycle engines[C]∥Proceedings of the 13th Joint Propulsion Conference. Reston: AIAA, 1977. |
28 | MACE J, NYBERG G. Fighter airframe/propulsion integration-A McDonnell aircraft perspective[C]∥Proceedings of the 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
29 | MISHLER R, WILKINSON T. Emerging airframe/propulsion integration technologies at General Electric[C]∥Proceedings of the 28th Joint Propulsion Conference and Exhibit. Reston: AIAA, 1992. |
30 | 王海峰. 战斗机推力矢量关键技术及应用展望[J]. 航空学报, 2020, 41(6): 524057. |
WANG H F. Key technologies and future applications of thrust vectoring on fighter aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524057 (in Chinese). | |
31 | 金捷. 美国推进系统数值仿真(NPSS)计划综述[J]. 燃气涡轮试验与研究, 2003, 16(1): 57-62. |
JIN J. A summary of numerical propulsion simulation system(NPSS)by NASA[J]. Gas Turbine Experiment and Research, 2003, 16(1): 57-62 (in Chinese). | |
32 | CURLETT B P, FELDER J. Object-oriented approach for gas turbine engine simulation: NASA-TM-106970[R]. Washington, D.C.: NASA, 1995. |
33 | 朱之丽. 航空燃气涡轮发动机工作原理及性能[M]. 上海: 上海交通大学出版社, 2014. |
ZHU Z L. Working principle and performance of aircraft gas turbine engines[M]. Shanghai: Shanghai Jiao Tong University Press, 2014 (in Chinese). | |
34 | DAS S, SUGANTHAN P N. Differential evolution: A survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4-31. |
35 | STORN R, PRICE K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. |
36 | KOWALSKI E J, ATKINS R A. A computer code for estimating installed performance of aircraft gas turbine engines Vol.Ⅲ-library of inlet/nozzle configurations and performance maps: NASA-CR-159693[R]. Washington, D.C.: NASA, 1979. |
[1] | Yifan WANG, Haoying CHEN, Haibo ZHANG. Inlet/engine matching of adaptive cycle engine for cruise mission [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128637-128637. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341