Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (5): 529937-529937.doi: 10.7527/S1000-6893.2023.29937
• Reviews • Previous Articles Next Articles
Received:
2023-12-04
Revised:
2023-12-12
Accepted:
2024-01-11
Online:
2024-03-15
Published:
2024-03-21
Contact:
Jinghui DENG
E-mail:djhz5421@163.com
Supported by:
CLC Number:
Jinghui DENG. Technical status and development of electric vertical take⁃off and landing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529937-529937.
Table 6
Domestic and foreign airworthiness regulations and standards of eVTOL
局方 | 审定类别 | 适航法规标准颁布情况 |
---|---|---|
EASA | 新建VTOL类别,按运行场景分为基本类和增强类 | 2019年7月针对小型(不大于9座,最大起飞重量不超过3 175 kg)的垂直起降航空器发布了专用条件(SC-VTOL)[ 2021—2022年,颁发了多份MOC SC-VTOL文件对VTOL航空器的适航符合性方法给出了指导 2021年4月发布了电动/混合推进系统专用条件 2023年5月发布电动垂直起降飞行器噪音技术规范 |
FAA | 根据21.17(b)、按特殊类别审定 | 2022年发布Joby JAS4-1和Archer M001审定基础适航标准的征求意见稿[ |
CAAC | 按“有人驾驶”和 “无人驾驶”分别审定,单独制定每个项目的专用条件 | 2022年2月发布《亿航 EH216-S 型无人驾驶航空器系统专用条件》[ 2022年12月发布《民用无人驾驶航空器系统适航审定管理程序》 2023年11月发布峰飞《V2000CG型无人驾驶航空器系统专用条件》 |
1 | Air Transport Action Group (ATAG). The right flightpath to reduce aviation emissions[EB/OL]. (2011-11)[2023-11-30]. . |
2 | Advisory Council for Aeronautical Research in Europe (ACARE). European aeronautics: A vision for 2020[EB/OL]. (2001-05-01)[2023-11-30].. |
3 | High Level Group on Aviation Research. Maintaining global leadership and serving society’s needs: Report of the high-level group on aviation research policy [M]∥ Flight path 2050: Europe’s vision for aviation. Brussels: Luxembourg Publication office of the European Union, European Commission, 2011. |
4 | HOLDEN J, GOEL N. Fast-forwarding to a future of on-demand urban air transportation[EB/OL]. (2016-10-27)[2023-11-30]. . |
5 | STRAUBINGER A, ROTHFELD R, SHAMIYEH M, et al. An overview of current research and developments in urban air mobility–Setting the scene for UAM introduction[J]. Journal of Air Transport Management, 2020, 87: 101852. |
6 | DENSO CORPORATION. Request for proposal: Electric vertical takeoff and landing aircraft: EP4023550A1[P]. 2022-07-06. |
7 | FAA. Urban air mobility and advanced air mobility[EB/OL].(2022-06-19)[2023-11-30]. . |
8 | MORGAN STANLEY. eVTOL/urban air mobility TAM update: A slow take-off, but sky’s the limit [EB/OL]. (2022-06-19)[2023-11-30]. . |
9 | FAA. Joby receives Part 135 certification from the FAA[EB/OL].(2023-02-20)[2023-11-30]. . |
10 | eVTOL INSIGHTS EDITORIAL. “Take a bow midnight”: Archer unveils its production aircraft - eVTOL insights[EB/OL].(2023-02-20)[2023-11-30]. . |
11 | ALCOCK C. Vertiport testbed evaluates eVTOL air services at paris airport[EB/OL].(2023-02-26)[2023-11-30].. |
12 | 中国民用航空局. 亿航 EH216-S 型无人驾驶航空器系统专用条件 [S]. 北京:中国民用航空局, 2022. |
Civil Aviation Administration of China. Special conditions for EH216-S unmanned aircraft system [S]. Beijing: Civil Aviation Administration of China, 2022 (in Chinese). | |
13 | DUFFY M J, WAKAYAMA S R, HUPP R. A study in reducing the cost of vertical flight with electric propulsion[C]∥ Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017. |
14 | PRADEEP P, WEI P. Energy efficient arrival with RTA constraint for urban eVTOL operations[C]∥ Proceedings of the 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018. |
15 | FREDERICKS W J, MOORE M D, BUSAN R C. Benefits of hybrid-electric propulsion to achieve 4x increase in cruise efficiency for a VTOL UAV[C]∥ AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2013. |
16 | 穆作栋, 袁成. 美国空军敏捷至上电动垂直起降飞行器项目分析[J]. 飞航导弹, 2021(2): 59-63, 75. |
MU Z D, YUAN C. Analysis of the agile-oriented electric vertical takeoff and landing vehicle project of the US air force[J]. Aerodynamic Missile Journal, 2021(2): 59-63, 75 (in Chinese). | |
17 | FISLER E. Comprehensive study and fundamental understanding of lithium sulfur batteries for eVTOL[D]. Maryland: University of Maryland, College Park, 2022. |
18 | LANGFORD J S, HALL D K. Electrified aircraft propulsion[J]. The Bridge, 2020, 50(2): 21-27. |
19 | Graduate Team Aircraft-E-VTOL. Request for proposal: Electric vertical takeoff and landing aircraft[EB/OL]. (2019-03-05)[2023-11-30]. . |
20 | DOO J T, PAVEL M D, DIDEY A, et al. NASA electric vertical takeoff and landing (eVTOL) aircraft technology for public services: Professional Review[R]. Washington, D.C.: NASA, 2021. |
21 | CLARKE S, REDIFER M, PAPATHAKIS K, et al. X-57 power and command system design[C]∥ 2017 IEEE Transportation Electrification Conference and Expo (ITEC). Piscataway: IEEE Press, 2017: 393-400. |
22 | BORER N K, PATTERSON M D, VIKEN J K, et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator: AIAA-2016-3920[R]. Reston: AIAA, 2016. |
23 | MOORE M D. Misconceptions of electric aircraft and their emerging aviation markets[C]∥ Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
24 | LAHAJI S, CURRIER P, ANDERSON R, et al. Modelling of a hybrid-electric system and design of load-following control law on hybrid-electric urban air mobility power plants[C]∥ Vertical Flight Society 77th Annual Forum & Technology Display. 2021. |
25 | BROWN A, HARRIS W. A vehicle design and optimization model for on-demand aviation[C]∥ Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018. |
26 | FINGER D F, BRAUN C, BIL C. A review of configuration design for distributed propulsion transitioning VTOL aircraft[C]∥Asia-Pacific International Symposium on Aerospace Technology APISAT 2017. 2017. |
27 | UGWUEZE O, STATHEROS T, BROMFIELD M A, et al. Trends in eVTOL aircraft development: The concepts, enablers and challenges[C]∥ Proceedings of the AIAA Scitech 2023 Forum. Reston: AIAA, 2023. |
28 | STRAUBINGER A, ROTHFELD R, SHAMIYEH M, et al. An overview of current research and developments in urban air mobility-Setting the scene for UAM introduction[J]. Journal of Air Transport Management, 2020, 87: 101852. |
29 | HIRSCHBERG M. Stand on the shoulders of giants[EB/OL]. (2019-01) [2023-11-30]. . |
30 | KADHIRESAN A R, DUFFY M J. Conceptual design and mission analysis for eVTOL urban air mobility flight vehicle configurations[C]∥ Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
31 | BACCHINI A, CESTINO E. Electric VTOL configurations comparison[J]. Aerospace, 2019, 6(3): 26. |
32 | MOLLER P S, ENG M. Performance evaluation of select personal air vehicles[EB/OL]. (2020-12-07) [2023-11-30]. . |
33 | MOLLER P S. Airborne personalized travel using ‘powered lift aircraft’: AIAA-1998-5533[R]. Reston: AIAA, 1998. |
34 | NATHEN P, STROHMAYER A, MILLER R, et al. Architectural performance assessment of an electric vertical take-off and landing (e-VTOL) aircraft based on a ducted vectored thrust concept[C]∥ Lilium GmbH, Claude-Dornier StraeSSe. 2021. |
35 | STOLL A M, STILSON E V, BEVIRT J, et al. Conceptual design of the Joby S2 electric VTOL PAV[C]∥ Proceedings of the 14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014. |
36 | Robinson Helicopter Company. R22 pilot’s operating handbook and FAA approved rotorcraft flight manual[EB/OL]. (2021-11-17)[2023-11-30]. . |
37 | Van’s aircraft - aircraft models: RV-7/7A specifications[EB/OL]. (2014-06)[2023-11-30]. . |
38 | Van’s aircraft - aircraft models: RV-7/7A performance[EB/OL]. (2014-06)[2023-11-30]. . |
39 | STOLL A, AVIATION J, BEVIRT J. Development of eVTOL aircraft for urban air mobility at joby aviation[C]∥ Proceedings of the Vertical Flight Society 78th Annual Forum. 2022. |
40 | 焦云华. 多点噪声测量方法研究及飞机噪声测量设备研制[D]. 北京: 北京航空航天大学, 2000. |
JIAO Y H. Research on multi-point noise measurement method and development of aircraft noise measurement equipment[D].Beijing: Beihang University, 2000 (in Chinese). | |
41 | DRIESSENS S, POUNDS P E I. Towards a more efficient quadrotor configuration[C]∥ 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2013: 1386-1392. |
42 | COLLINS E J, BROWN A, COATNEY M, et al. Lighter-than-air and pressurized structures technology for unmanned aerial vehicles(UAVs)[EB/OL]. (2010-01)[2023-11-30]. . |
43 | VICENCIO K, KORRAS T, BORDIGNON K A, et al. Energy-optimal path planning for six-rotors on multi-target missions[C]∥ 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2015: 2481-2487. |
44 | MORBIDI F, CANO R, LARA D. Minimum-energy path generation for a quadrotor UAV[C]∥ 2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2016: 1492-1498. |
45 | PRADEEP P, WEI P. Optimal speed profile for arrival of tandem tilt-wing eVTOL aircraft with RTA constraint[C]∥2018 IEEE CSAA Guidance, Navigation and Control Conference (GNCC). Piscataway: IEEE; 2018. |
46 | 《飞机设计手册》总编委会.飞机设计手册.19,直升机设计[M]. 北京:航空工业出版社, 2005. |
General Editorial Board of the Aircraft Design Manual. Aircraft design manual. 19, helicopter design[M]. Beijing: Aviation Industry Press, 2005 (in Chinese). | |
47 | KIM H D, PERRY A T, ANSELL P J. A review of distributed electric propulsion concepts for air vehicle technology[C]∥ 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2018: 1-21. |
48 | 梁向东. 电动飞行器及其关键技术的研究探析[J]. 航空科学技术, 2020, 31(6): 1-6. |
LIANG X D. Research on electric vehicle and its key technology[J]. Aeronautical Science & Technology, 2020, 31(6): 1-6 (in Chinese). | |
49 | JOHNSON W, SILVA C. Observations from exploration of VTOL urban air mobility designs[C]∥Asian/Australian Rotorcraft Forum (ARF 2018). 2018. |
50 | JOHNSON W. NDARC - NASA design and analysis of rotorcraft validation and demonstration: NASA TP 2015-218751 [R]. Washington, D.C.: NASA, 2015. |
51 | JOHNSON W. NDARC — NASA design and analysis of rotorcraft. Theoretical basis and architecture[C]∥American Helicopter Society Specialists' Conference on Aeromechanics. 2010. |
52 | JOHNSON W. NDARC — NASA design and analysis of rotorcraft. Validation and demonstration[C]∥American Helicopter Society Specialists’ Conference on Aeromechanics. 2010. |
53 | JOHNSON W. Propulsion system models for rotorcraft conceptual design[C]∥American Helicopter Society 5th Decennial Aeromechanics Specialists’ Conference. 2014. |
54 | BOYD D D JR, GREENWOOD E, WATTS M E, et al. Examination of a rotorcraft noise prediction method and comparison to flight test data: NASA TM 2017-219370[R]. Washington, D.C.: NASA, 2017. |
55 | KRISHNAMURTHY S, RIZZI S, BOYD D D, et al. Auralization of rotorcraft periodic flyover noise from design predictions[C]∥ American Helicopter Society 74th Annual Forum. 2018. |
56 | LAWRENCE B, THEODORE C R, JOHNSON W, et al. A handling qualities analysis tool for rotorcraft conceptual designs[J]. The Aeronautical Journal, 2018, 122(1252): 960-987. |
57 | ROHL P J, DORMAN P, CESNIK C E S, et al. IXGEN — A modeling tool for the preliminary design of composite rotor blades[C]∥American Helicopter Society Future Vertical Lift Aircraft Design Conference. 2012. |
58 | SILVA C, JOHNSON W, SOLIS E. Multidisciplinary conceptual design for reduced-emission rotorcraft[C]∥ American Helicopter Society Technical Conference on Aeromechanics Design for Transformative Vertical Flight. 2018. |
59 | JOHNSON W, SILVA C, SOLIS E. Concept vehicles for VTOL air taxi operations[C]∥ American Helicopter Society Technical Conference on Aeromechanics Design for Transformative Vertical Flight. 2018. |
60 | PATTERSON M D, ANTCLIFF K R, KOHLMAN L. A proposed approach to studying urban air mobility missions including an initial exploration of mission requirements[C]∥ American Helicopter Society 74th Annual Forum. 2018. |
61 | SILVA C J, JOHNSON W, SOLIS E, et al. VTOL urban air mobility concept vehicles for technology development: AIAA-2018-3847[R]. Reston: AIAA, 2018. |
62 | COLE J A, RAJAUSKI L, LOUGHRAN A, et al. Configuration study of electric helicopters for urban air mobility[J]. Aerospace, 2021, 8(2): 54. |
63 | KEE S G. Guide for conceptual helicopter design[D]. Monterey: Naval Postgraduate School(Monterey), 1983. |
64 | SALINGER S J. Electric helicopter configuration selection for urban air mobility applications[D]. Lewisburg: Bucknell University, 2019. |
65 | RAJAUSKI L. Component based selection criteria for electric helicopter conceptual design[D]. Lewisburg: Bucknell University, 2020. |
66 | AKASH A, RAJ V S J, SUSHMITHA R, et al. Design and analysis of VTOL operated intercity electrical vehicle for urban air mobility[J]. Electronics, 2021, 11(1): 20. |
67 | 赵洪, 李建波, 刘铖. 电动直升机概念设计与分析[J]. 航空学报, 2017, 38(7): 520866. |
ZHAO H, LI J B, LIU C. Conceptual design and analysis of electric helicopters[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 520866 (in Chinese). | |
68 | NASA. OpenVSP [EB/OL]. (2022-12-16)[2023-11-30]. . |
69 | NASA. Thrust to weight ratio [EB/OL]. (2015)[2023-11-30]. . |
70 | Aerodynamic research: NASA Technical Paper 3675[R]. Washington, D. C.: NASA, 1997. |
71 | SADRAEY M H. Aircraft design: A systems engineering approach[M]. Chichester: John Wiley & Sons, 2013. |
72 | “Eclipse aviation eclipse 500-specifications - technical data /description[EB/OL]. (2020-08-22) [2023-11-30]. . |
73 | LEISHMAN J G. Principles of helicopter aerodynamics[M]. Cambridge: Cambridge University Press, 2006. |
74 | BAEDER J D. Passive design for isolated blade-vortex interaction noise reduction[C]∥ Proceedings of the 53th Annual Forum of the American Helicopter Society. 1997. |
75 | SCHULTZ K J, SPLETTSTOESSER W, JUNKER B. A parametric wind tunnel test on rotorcraft aerodynamics and acoustics(HELISHAPE) –Test procedures and representative results[C]∥ Proceedings of the 22nd European Rotorcraft Forum. 1996. |
76 | CHEN P C, BAEDER J D, EVANS R A D, et al. Blade-vortex interaction noise reduction with active twist smart rotor technology[J]. Smart Materials and Structures, 2001, 10(1): 77-85. |
77 | GARETON V, GERVAIS M, HEGER R. Acoustic design and testing of the Eurocopter EC145T2 and EC175B - A harmonized Franco-German approach[C]∥ Proceedings of the 39th European Rotorcraft Forum. 2013. |
78 | LEVERTON J W. Helicopter noise: What is the problem? Vertiflite, 2014, 60(2): 12-15. |
79 | HOLDEN J, GOEL N. Fast-forwarding to a future of on-demand urban air transportation[R]. San Francisco: UBER, 2016. |
80 | MASAHIKO S, YASUTADA T. Development of a hybrid method of CFD and prescribed wake model for helicopter BVI noise prediction[C]∥ Proceedings of 69th Annual Forum of the AHS. 2013. |
81 | RIZZI S A, HUFF D, BOYD D D JR, et al. Urban air mobility noise: Current practice, gaps, and recommendations: NASA/TP–2020-5007433 [R]. Washington, D.C.: NASA, 2020. |
82 | QUACKENBUSH T, RICCI-MORETTI L, BRENTNER K, et al. Aeroacoustic modeling of an eVTOL slowed rotor winged compound aircraft[C]∥ Proceedings of the Vertical Flight Society 75th Annual Forum. 2019. |
83 | WACHSPRESS D, BRENTNER K, CONTINUUM D D I, et al. Rotor/airframe aeroacoustic prediction for eVTOL UAM aircraft[C]∥ Proceedings of the Vertical Flight Society 75th Annual Forum. 2019. |
84 | JIA Z Q, LEE S. Acoustic analysis of urban air mobility quadrotor aircraft[C]∥ Vertical Flight Society’s Transformative Vertical Flight Forum. 2020. |
85 | ALVAREZ E, UNIVERSITY B Y, CRITCHFIELD T, et al. Rotor-on-rotor aeroacoustic interactions of multirotor in hover[C]∥ Proceedings of the Vertical Flight Society 76th Annual Forum. 2020. |
86 | SMITH B, INSTITUTE R P, GANDHI D, et al. A comparison of multicopter noise characteristics with increasing number of rotors[C]∥ Proceedings of the Vertical Flight Society 76th Annual Forum. 2020. |
87 | SMITH B, LYRINTZIS A, INSTITUTE R P, et al. An assessment of multi-copter noise in edgewise flight[C]∥ Proceedings of the Vertical Flight Society 77th Annual Forum. 2021. |
88 | SMITH B, LYRINTZIS A, INSTITUTE R P, et al. eVTOL rotor noise in ground effect[C]∥ Proceedings of the Vertical Flight Society 77th Annual Forum.2021. |
89 | PASSE B, BAEDER J. Computational aeroacoustics of different propeller configurations for eVTOL applications[C]∥Vertical Flight Society’s Autonomous VTOL Technical Meeting and Electric VTOL Symposium. 2019. |
90 | ZHANG J, BRENTNER K, SMITH E. Prediction of the aerodynamic and acoustic impact of propeller-wing interference[C]∥ Proceedings of the Vertical Flight Society’s Aeromechanics for Advanced Vertical Flight Technical Meeting. 2020. |
91 | DELRIEUX Y, SPLE W R, MERCHER E, et al. The ONERA—DLR aeroacoustic rotor optimisation programme ERATO: Methodology and achievements[C]∥AHS Aerodynamics, Acoustics, and Test and Evaluation Technical Specialists Meeting. 2002. |
92 | SPLETTSTOESSER W, SCHULTZ K, BOXWELL D, et al. Helicopter model rotor-blade vortex interaction impulsive noise: scalability and parametric variations[C]∥ 10th European Rotorcraft Forum. 1984. |
93 | GANDHI F, INSTITUTE R P, PEPE J, et al. High solidity, low tip-speed rotors for reduced eVTOL tonal noise[C]∥ Proceedings of the Vertical Flight Society 78th Annual Forum. 2022. |
94 | FLEMING J, SCHWARTZ K, ALEXANDER N, et al. Measured acoustic characteristics of low tip speed eVTOL rotors in hover[C]∥ Proceedings of the Vertical Flight Society 78th Annual Forum. 2022. |
95 | MORGADO J, SILVESTRE M Â R, PÁSCOA J C. Validation of new formulations for propeller analysis[J]. Journal of Propulsion and Power, 2015, 31(1): 467-477. |
96 | GUR O, ROSEN A. Propeller performance at low advance ratio[J]. Journal of Aircraft, 2005, 42(2): 435-441. |
97 | OL M, ZEUNE C, LOGAN M. Analytical/experimental comparison for small electric unmanned air vehicle propellers[C]∥ Proceedings of the 26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008. |
98 | MACNEILL R, VERSTRAETE D. Blade element momentum theory extended to model low Reynolds number propeller performance[J]. The Aeronautical Journal, 2017, 121(1240): 835-857. |
99 | PHILLIPS W F. Mechanics of flight[M]. 2nd ed. New York: John Wiley & Sons, 2010. |
100 | ZAGHARI B, KIRAN A, SINNIGE T, et al. The impact of electric machine and propeller coupling design on electrified aircraft noise and performance[C]∥ Proceedings of the AIAA SCITECH 2023 Forum. Reston: AIAA, 2023. |
101 | 张卓然, 陆嘉伟, 张伟秋, 等 .飞机电推进系统高效能电机及其驱动控制技术[J/OL].中国电机工程学报, (2023-07-07) [2023-11-30]. . |
ZHANG Z R, LU J W, ZHANG W Q, et al. High-performance electric machine and drive technologies for aircraft electric propulsion[J/OL]. Proceedings of the CSEE, (2023-07-07). [2023-11-30] (in Chinese). | |
102 | 杨敏. 锂电池在航空领域的应用再现曙光[J]. 航空维修与工程, 2017(9): 30-32 (in Chinese). |
YANG M. Lithium battery began to return commercial aircraft[J]. Aviation Maintenance & Engineering, 2017(9): 30-32 (in Chinese). | |
103 | SAHOO S, ZHAO X, KYPRIANIDIS K. A review of concepts, benefits, and challenges for future electrical propulsion-based aircraft[J]. Aerospace, 2020, 7(4): 44. |
104 | LEI T, YANG Z, LIN Z C, et al. State of art on energy management strategy for hybrid-powered unmanned aerial vehicle[J]. Chinese Journal of Aeronautics, 2019, 32(6): 1488-1503. |
105 | ZHANG C Z, QIU Y Q, CHEN J W, et al. A comprehensive review of electrochemical hybrid power supply systems and intelligent energy managements for unmanned aerial vehicles in public services[J]. Energy and AI, 2022, 9: 100175. |
106 | BREIT J S. Improved energy management system for airplane electrical power[C]∥ SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA: SAE International, 2021. |
107 | BOLAM R C, VAGAPOV Y, ANUCHIN A. Review of electrically powered propulsion for aircraft[C]∥ 2018 53rd International Universities Power Engineering Conference (UPEC). Piscataway: IEEE Press, 2018: 1-6. |
108 | WHEELER P, SIRIMANNA T S, BOZHKO S, et al. Electric/hybrid-electric aircraft propulsion systems[J]. Proceedings of the IEEE, 2021, 109(6): 1115-1127. |
109 | BRELJE B J, MARTINS J R R A. Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches[J]. Progress in Aerospace Sciences, 2019, 104: 1-19. |
110 | ANSELL P J, HARAN K S. Electrified airplanes: A path to zero-emission air travel[J]. IEEE Electrification Magazine, 2020, 8(2): 18-26. |
111 | FREDERICKS W L, SRIPAD S, BOWER G C, et al. Performance metrics required of next-generation batteries to electrify vertical takeoff and landing (VTOL) aircraft[J]. ACS Energy Letters, 2018, 3(12): 2989-2994. |
112 | SNYDER C, CENTER N G R. More/all electric vertical take-off and landing (VTOL) vehicle sensitivities to propulsion and power performance[C]∥ Proceedings of the Vertical Flight Society 76th Annual Forum. 2020. |
113 | YANG X G, LIU T, GE S H, et al. Challenges and key requirements of batteries for electric vertical takeoff and landing aircraft[J]. Joule, 2021, 5(7): 1644-1659. |
114 | HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 834-854. |
115 | 王超君, 陈翔, 彭思侃, 等. 锂离子电池发展现状及其在航空领域的应用分析[J]. 航空材料学报, 2021, 41(3): 83-95. |
WANG C J, CHEN X, PENG S K, et al. Recent advances in lithium-ion batteries and their applications towards aerospace[J]. Journal of Aeronautical Materials, 2021, 41(3): 83-95 (in Chinese). | |
116 | AMIN R, MURALIDHARAN N, DIXIT M, et al. Design and performance of lithium-ion batteries for achieving electric vehicle takeoff, flight, and landing[M]∥ Lithium-ion batteries-recent advanced and emerging topics [Working Title]. London: IntechOpen Limited, 2022. |
117 | AFONSO F, SOHST M, DIOGO C M A, et al. Strategies towards a more sustainable aviation: A systematic review[J]. Progress in Aerospace Sciences, 2023, 137: 100878. |
118 | JIANG K, LIAO G L, E J Q, et al. Thermal management technology of power lithium-ion batteries based on the phase transition of materials: A review[J]. Journal of Energy Storage, 2020, 32: 101816. |
119 | CHEN Q, ZHANG G B, ZHANG X Z, et al. Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability[J]. Applied Energy, 2021, 286: 116496. |
120 | WANG Z C, DU C Q. A comprehensive review on thermal management systems for power lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110685. |
121 | ANDERSON A D, RENNER N J, WANG Y Y, et al. System weight comparison of electric machine topologies for electric aircraft propulsion[C]∥ 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2018: 1-16. |
122 | EL-REFAIE A, OSAMA M. High specific power electrical machines: A system perspective[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(1): 88-93. |
123 | 高华敏, 张卓然, 王晨, 等. 电推进飞机新型高功率密度轴向磁场永磁电机对比与分析[J]. 航空学报, 2022, 43(5): 325229. |
GAO H M, ZHANG Z R, WANG C, et al. Comparison and analysis of new high power density axial flux permanent magnet machine for electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 325229 (in Chinese). | |
124 | 鄢永. 分布式电推进飞机背景下的永磁同步电机电流控制研究[D]. 南京: 南京航空航天大学, 2021. |
YAN Y. Research on current control of permanet magnet synchoronous motor for distributed electric propulsion aircraft[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
125 | CHEN R R, NIU J H, REN R, et al. A cryogenically-cooled MW inverter for electric aircraft propulsion[C]∥ 2020 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2020: 1-10. |
126 | ZHANG D, HE J B, PAN D. A megawatt-scale medium-voltage high-efficiency high power density “SiC+Si” hybrid three-level ANPC inverter for aircraft hybrid-electric propulsion systems[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 5971-5980. |
127 | DESHPANDE A, CHEN Y Z, NARAYANASAMY B, et al. Design of a high-efficiency, high specific-power three-level T-type power electronics building block for aircraft electric-propulsion drives[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 407-416. |
128 | HASSAN M U, YUAN Z, PENG H W, et al. Model based optimization of propulsion inverter for more-electric aircraft applications using double Fourier integral analysis[C]∥ Proceedings of the AIAA Propulsion and Energy 2020 Forum. Reston: AIAA, 2020. |
129 | WILLIS J B, BEARD R W. Pitch and thrust allocation for full-flight-regime control of winged eVTOL UAVs[J]. IEEE Control Systems Letters, 2021, 6: 1058-1063. |
130 | SUIÇMEZ E C, KUTAY A T. Full envelope nonlinear flight controller design for a novel electric VTOL (eVTOL) air taxi[J]. The Aeronautical Journal, 2023: 1-28. |
131 | PAVEL M D. Understanding the control characteristics of electric vertical take-off and landing (eVTOL) aircraft for urban air mobility[J]. Aerospace Science and Technology, 2022, 125: 107143. |
132 | WALTER A, MCKAY M, NIEMIEC R, et al. Hover dynamics and flight control of a UAM-scale quadcopter with hybrid RPM and collective pitch control[J]. Journal of the American Helicopter Society, 2023, 68(2): 143-160. |
133 | 陈森, 薛文超, 黄一. 推力矢量飞行器的自抗扰控制设计及控制分配[J]. 控制理论与应用, 2018, 35(11): 1591-1600. |
CHEN S, XUE W C, HUANG Y. Active disturbance rejection control and control allocation for thrust-vectored aircraft[J]. Control Theory & Applications, 2018, 35(11): 1591-1600 (in Chinese). | |
134 | LOMBAERTS T, KANESHIGE J, SCHUET S, et al. Dynamic inversion based full envelope flight control for an eVTOL vehicle using a unified framework[C]∥ Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
135 | MUKHERJEE B, UNIVERSITY P S, BRENTNER K, et al. An investigation of piloting and flight control strategies on generic eVTOL noise[C]∥ Proceedings of the Vertical Flight Society 78th Annual Forum. 2022. |
136 | SAETTI U, ENCIU J, HORN J F. Flight dynamics and control of an eVTOL concept aircraft with a propeller-driven rotor[J]. Journal of the American Helicopter Society, 2022, 67(3): 153-166. |
137 | LIU J X, LIN Q, LIU D H, et al. Robust adaptive control of a slow rotor compound eVTOL general aircraft[C]∥ 2022 8th International Conference on Control Science and Systems Engineering (ICCSSE). Piscataway: IEEE Press, 2022: 126-130. |
138 | SCHOSER J, CUADRAT-GRZYBOWSKI M, CASTRO S G. Preliminary control and stability analysis of a long-range eVTOL aircraft[C]∥ Proceedings of the AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
139 | YOKOTA K, FUJIMOTO H. Aerodynamic force control for tilt-wing eVTOL using airflow vector estimation[J]. IEEE Transactions on Transportation Electrification, 2022, 8(4): 4163-4172. |
140 | SIMMONS B M. System identification for eVTOL aircraft using simulated flight data[C]∥ Proceedings of the AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
141 | LOMBAERTS T, KANESHIGE J, SCHUET S, et al. Nonlinear dynamic inversion based attitude control for a hovering quad tiltrotor eVTOL vehicle[C]∥ Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
142 | QU S, ZHU G M, SU W H, et al. Adaptive model predictive control of a six-rotor electric vertical take-off and landing urban air mobility aircraft subject to motor failure during hovering[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(7): 1396-1407. |
143 | QU S, ZHU G M, SU W H, et al. LPV model-based adaptive MPC of an eVTOL aircraft during tilt transition subject to motor failure[J]. International Journal of Control, Automation and Systems, 2023, 21(2): 339-349. |
144 | 刘巨江, 谭郁松 .基于安全性的电动垂直起降飞行器飞控系统架构设计[J/OL].重庆大学学报, (2023-07-19)[2023-11-30]. . |
LIU J J, TAN Y S. Architecture design of flight control system for electric vertical takeoff and landing aircraft based on safety analysis[J/OL]. Journal of Chongqing University, (2023-07-19) [2023-11-30]. (in Chinese). | |
145 | International Civil Aviation Organization. Annex 8-Airworthiness of aircraft 12th Edition[R]. Montreal, Quebec: ICAO, 2018. |
146 | EASA. Special condition for small-category VTOL aircraft[R]. Cologne: EASA, 2019. |
147 | FAA. Airworthiness criteria: Special class airworthiness criteria for the Joby Aero, Inc. Model JAS4–1 powered-lift[R]. Washington, D.C.: FAA, 2022. |
148 | FAA. Airworthiness criteria: Special class airworthiness criteria for the Archer Aviation Inc. Model M001 powered-lift[R]. Washington, D.C.: FAA, 2022. [149] LITTELLJD. Challenges in Vehicle Safety and Occupant Protection for Autonomous electric Vertical Take-off and Landing (eVTOL) Vehicles[C]∥ 2019 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2019: 1-16. |
150 | CARDOSO S H S B, DE OLIVEIRA M V R, GODOY J R S. eVTOL certification in FAA and EASA performance-based regulation environments: A bird strike study-case[J]. Journal of Aerospace Technology and Management, 2022, 14. |
151 | SAE International Aerospace Recommended Practice. Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment: SAE Standard ARP4761 [S]. Washington, D.C.: SAE, 1996. |
[1] | Jinchao MA, Yang LU, Liangquan WANG, Kuihui SONG. Active control test of tiltrotor near-field aeroacoustics based on higher harmonic control [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528602-528602. |
[2] | Qi LIU, Yongjie SHI, Zhiyuan HU, Guohua XU. Parameter effects analysis on aerodynamic and aeroacoustic characteristics of coaxial rigid rotor [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528856-528856. |
[3] | Zhuangzhuang CUI, Xin YUAN, Guoqing ZHAO, Simeng JING, Qijun ZHAO. Influence of control strategy on forward flight performance of coaxial rigid rotor high⁃speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529256-529256. |
[4] | Pengpeng SUN, Ping’an LIU, Feng FAN, Wei ZENG. Aerodynamic interaction characteristics of coaxial rigid rotor⁃fuselage in hover condition [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529284-529284. |
[5] | Changhao LIU, Yihua CAO, Xiaomeng MEI, Maosheng WANG, Guanglin ZHANG. Transport effectiveness evaluation of high⁃speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 530182-530182. |
[6] | Weiguo ZHANG, Min TANG, Jie WU, Xianmin PENG, Guichuan ZHANG, Bowen NIE, Liangquan WANG, Chaoqun LI. Overview of wind tunnel test research on tiltrotor aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 530114-530114. |
[7] | Zonghui WANG, Yunjun YANG, Hongrui ZHAO, Xuechen WANG. Aerodynamic optimization design of tiltrotor under multiple flight conditions [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529024-529024. |
[8] | Yilan ZENG, Dong HAN, Zhuangzhuang LIU, Xin ZHOU. Driving rotation characteristics of a compound helicopter’s rotor undergoing upwash in high⁃speed flight [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529061-529061. |
[9] | Shaoqiang HAN, Wenping SONG, Zhonghua HAN, Jianhua XU. High-accuracy numerical-simulation of unsteady flow over high-speed coaxial rigid rotors [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529064-529064. |
[10] | Zixu WANG, Pan LI, Ke LU, Zhenhua ZHU, Renliang CHEN. Optimized design of trim strategy for coaxial rigid rotor high-speed helicopter [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529069-529069. |
[11] | Jinghui DENG. Key technologies and development for high-speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529085-529085. |
[12] | Jiaqi LIU, Rongqian CHEN, Jinhua LOU, Xu HAN, Hao WU, Yancheng YOU. Aerodynamic shape optimization of high-speed helicopter rotor airfoil based on deep learning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529828-529828. |
[13] | Chang WANG, Long HE, Dongxia XU, Min TANG, Shuai MA, Ximing WU. Flow control drag reduction of hub on coaxial rigid rotor aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529084-529084. |
[14] | Hua YANG, Shusheng CHEN, Zhenghong GAO, Quanfeng JIANG, Wei ZHANG. Rotor aerodynamic data fusion based on Bayesian framework [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 128960-128960. |
[15] | Chuihuan KONG, Dawei WU, Zhaoguang TAN, Lijun PAN, Rubing MA, Jiangtao SI. Design of fully electric scheme for three⁃surface verification aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629618-629618. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341