Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (5): 529956-529956.doi: 10.7527/S1000-6893.2024.29956
• Reviews • Previous Articles Next Articles
Guirong ZHOU(), Jianyuan XU, Shaobo MA, Junyao ZONG, Jinqing SHEN, Haijie ZHU
Received:
2023-12-09
Revised:
2024-01-03
Accepted:
2024-01-24
Online:
2024-03-15
Published:
2024-01-25
Contact:
Guirong ZHOU
E-mail:zhouguirong@comac.cc
Supported by:
CLC Number:
Guirong ZHOU, Jianyuan XU, Shaobo MA, Junyao ZONG, Jinqing SHEN, Haijie ZHU. Review of key technologies for avionics systems integration on large passenger aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529956-529956.
Table 1
Comparison of onboard data bus[1]
特征 | 协议 | ||||||
---|---|---|---|---|---|---|---|
ARINC664 | ARINC825 | TTEthernet | TTP/C | Flexray | TTCAN | ARINC629 | |
最大传输 速度/Mbps | 100 | 1 | 100 | 25 | 10 | 1 | 2 |
时间触发 机制 | 否 | 否 | 是 | 是 | 是 | 是 | 否 |
事件触发 机制 | 是 | 是 | 否 | 否 | 是 | 是 | 是 |
来源 | Etherent(IEEE802.3) | CAN | Etherent(IEEE802.3) | None | Byteflight,TTP/C | CAN | ARINC429 |
总线仲裁 机制 | CSMA/CA | CSMA/CA | TDMA | TDMA | 时间触发 | CSMA/CA | 时间触发 |
拓扑结构 | 星型 | 总线型、星型、点对点 | 分组交换 网络 | 总线型、 星型 | 点对点、星型 | 总线型、星型、点对点 | 点对点、总线型 |
时钟同步 | 软件和硬件结合 | 软件层面 | 软件层面 | 硬件层面 | 硬件层面 | 硬件层面 | 软件层面 |
故障检测 | 硬件层面 | 软件层面 | 硬件层面 | 硬件层面 | 硬件层面 | 软件层面 | 软件层面 |
支持的数据传输类型 | 异步 | 异步 | 同步 | 同步 | 同步,异步 | 异步 | 异步 |
1 | 赵万里, 郭迎清, 徐柯杰, 等. 航空发动机多电分布式控制系统故障诊断与容错关键技术综述[J]. 航空学报, 2023, 44(10): 027519. |
ZHAO W L, GUO Y Q, XU K J, et al. Review of key technologies for fault diagnosis and accommodation for multi⁃electric distributed engine control system[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 027519 (in Chinese). | |
2 | 王羽, 洪沛, 王震. IMA系统软件集成过程的相关考虑[J]. 航空电子技术, 2021, 52(3): 37-42. |
WANG Y, HONG P, WANG Z. Considerations for software integration process in IMA systems[J]. Avionics Technology, 2021, 52(3): 37-42 (in Chinese). | |
3 | 张旻, 武君胜, 吴芳. 基于角色的IMA平台应用软件开发与集成技术[J]. 航空计算技术, 2021, 51(6): 88-91, 95. |
ZHANG M, WU J S, WU F. Application software development and integration technology of role-based IMA platform[J]. Aeronautical Computing Technique, 2021, 51(6): 88-91, 95 (in Chinese). | |
4 | SPITZER C R, FERRER U, FERRER T, 等. 数字航空电子技术(上、下册)[M]. 肖刚, 程宇峰, 译. 北京: 航空工业出版社, 2010. |
SPITZER C R, FERRER U, FERRER T, et al. Digital avionics[M]. XIAO G, CHENG Y F, translated. Beijing: Aviation Industry Press, 2010 (in Chinese). | |
5 | 熊华钢, 王中华. 先进航空电子综合技术[M]. 北京: 国防工业出版社, 2009. |
XIONG H G, WANG Z H. Advanced avionics integration techniques[M]. Beijing: National Defense Industry Press, 2009 (in Chinese). | |
6 | 何锋. 机载网络技术基础[M]. 北京: 国防工业出版社, 2018. |
HE F. Fundamentals of airborne network[M]. Beijing: National Defense Industry Press, 2018 (in Chinese). | |
7 | 金德琨, 敬忠良, 王国庆, 等. 民用飞机航空电子系统[M]. 上海: 上海交通大学出版社, 2011. |
JIN D K, JIANG Z L, WANG G Q, et al. Civil aircraft avionics systems[M]. Shanghai: Shanghai Jiao Tong University Press, 2011 (in Chinese). | |
8 | 蒲小勃. 现代航空电子系统与综合[M]. 北京: 航空工业出版社, 2013. |
PU X B. Modern avionics system and integration[M]. Beijing: Aviation Industry Press, 2013 (in Chinese). | |
9 | 房玮. 浅谈民航飞机驾驶舱显示器的演变[J]. 科技资讯, 2016, 14(20): 55-56. |
FANG W. On the evolution of cockpit display of civil aviation aircraft[J]. Science & Technology Information, 2016, 14(20): 55-56 (in Chinese). | |
10 | 江卓远, 孙瑞山. 民机飞行安全中的人为因素影响机理研究[J]. 科技创新导报, 2016, 13(15): 181. |
JIANG Z Y, SUN R S. Annual report of human factor influencing mechanism on civil aircraft flight safety[J]. Science and Technology Innovation Herald, 2016, 13(15): 181 (in Chinese). | |
11 | 周贵荣. 民用飞机驾驶舱显示系统[M]. 上海: 上海交通大学出版社, 2019: 15-22. |
ZHOU G R. Civil aircraft cockpit display system[M]. Shanghai: Shanghai Jiao Tong University Press, 2019: 15-22 (in Chinese). | |
12 | LEFEBVRE Y. Mastering the ARINC 661 standard[C]∥ SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale: SAE International, 2011. |
13 | AEEC. ARINC 661-6 Cockpit display system interfaces to user systems: ARINC 661 [S]. Annapolis City: ARINC, 2016. |
14 | 许健, 吴磊, 褚江萍, 等. 民用飞机信息重构技术性能分析[J]. 航空学报, 2019, 40(2): 522442. |
XU J, WU L, CHU J P, et al. Performance analysis of information reconfiguration technology on civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522442 (in Chinese). | |
15 | YANG W, SUN Q, GAO X L, et al. Human interface research of civil aircraft cockpit based on touch control technology[J]. IOP Conference Series: Materials Science and Engineering, 2019, 608(1): 012018. |
16 | Committee S-7. Touch interactive display systems: Human factors considerations, system design and performance guidelines: SAE ARP 60494 [S]. Warrendale: SAE International, 2019. |
17 | YEH M, SWIDER C, JO Y J, et al. Human factors considerations in the design and evaluation of flight deck displays and controls: Version 2.0[R]. Cambridge: John A. Volpe National Transportation Systems Center (US), 2016. |
18 | LOUKIA D L, KEY D, IMMANUEL B. Cockpit interruptions and distractions: A line observation study[C]∥11th International Symposium on Aviation Psychology. Columbus: The Human Systems In-tegration Division at NASA Ames Research Center, 2001. |
19 | HUTCHINS E. The cognitive consequences of patterns of information flow[J]. Intellectica Revue De L’Association Pour La Recherche Cognitive, 2000, 30(1): 53-74. |
20 | PAUL C S, ANNA C T. Flight crew task management in non-normal situations[EB/OL]. (2004-11-04)[2023-11-01]. . |
21 | Committee S-7. SAE ARP4102-7 Appendix A Elec-tronic display symbology for EADI/PFD [S]. War-rendale: SAE International, 1999. |
22 | Committee S-7. SAE ARP4102 Flight deck display panels, controls, and displays [S]. Warrendale, PA: SAE International, 2007. |
23 | FUNK K, BRAUNE R. The AgendaManager: A knowledge-based system to facilitate the management of flight deck activities[C]∥ SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale: SAE International, 1999: 922-936. |
24 | Committee S-7. SAE ARP5056 Flight crew interface considerations in the flight deck design process for Part 25 aircraft [S]. Warrendale: SAE International, 2006. |
25 | FAA. AC120-28D Criteria for approval of category Ⅲ weather minima for takeoff, landing, and rollout: AFS-400 [S]. Washington, D.C.: FAA, 1999. |
26 | FAA. AC120-29A Criteria for approval of category Ⅲ weather minima for takeoff, landing, and rollout: AFS-400 [S]. Washington, D.C.: FAA, 1999. |
27 | AFS-400. AC120-29A Criteria for approval of category Ⅰ and category Ⅱ weather minima for approach [S]. Washington, D.C.: FAA, 2002. |
28 | AFS-400. AC90-101A Approval guidance for required navigation performance (RNP) procedures with authorization required (AR) [S]. Washington, D.C.: FAA, 2011. |
29 | Committee S-7. SAE ARP4102-7 Appendix C Elec-tronic display symbology for engine displays [S]. Warrendale: SAE International, 1999. |
30 | ANM-11. AC25-11B Electronic flight displays [S]. Washington, D.C.: FAA, 2014. |
31 | Committee S-7. SAE ARP4102-7 Appendix B Elec-tronic display symbology for E [S]. Warrendale: SAE International, 1999. |
32 | MOIR I, SEABRIDGE A, JUKES M. Civil avionics systems[M]. 2nd ed. New York: Wiley, 2013: 88-109. |
33 | 李航, 叶宝玉. 典型民航飞机通信系统[M]. 西安: 西北工业大学出版社, 2016: 20-42. |
LI H, YE B Y. Typical civil aviation aircraft communication system[M]. Xi’an: Northwestern Polytechnical University Press, 2016: 20-42 (in Chinese). | |
34 | 何锋. 航空电子系统综合调度理论与方法[M]. 北京: 清华大学出版社, 2017: 30-50. |
HE F. Theory and approach to avionics system integrated scheduling[M]. Beijing: Tsinghua University Press, 2017: 30-50. (in Chinese). | |
35 | EASA. ED decision 2018/008/R [S]. Cologne: EASA, 2018. |
36 | EASA. Integrated modular avionics (IMA): AMC 20-170 [S]. Cologne: EASA, 2017. |
37 | Committee S-7. Guidelines for development of civil aircraft and system: SAE ARP 4754A [S]. Warrendale: SAE International, 2010. |
38 | 马朝军, 黄世杰, 付玉堂, 等. 基于综合模块化航电多方协同开发下的适航认证工作策划考虑[J]. 航空标准化与质量, 2023(2): 21-26. |
MA C J, HUANG S J, FU Y T, et al. Planning and consideration of airworthiness certification based on integrated modular avionics multi-party collaborative development[J]. Aeronautic Standardization & Quality, 2023(2): 21-26 (in Chinese). | |
39 | 韩嫚莉, 周广飞. IMA增量式认可与TSO取证的研究[J]. 航空计算技术, 2022, 52(2): 125-129. |
HAN M L, ZHOU G F. Research on incremental acceptance and TSO authorization of integrated modular avionics system[J]. Aeronautical Computing Technique, 2022, 52(2): 125-129 (in Chinese). | |
40 | RTCA. Integrated modular avionics (IMA) design guidance and certification considerations: DO-297 [S]. Washington, D.C.: RTCA.Inc, 2005. |
41 | 吴佳驹, 杨俊, 韩艳龙, 等. 飞机管理系统的研究现状与发展趋势[C]∥第九届中国航空学会青年科技论坛论文集. 北京: 中国航空学会, 2020: 893-901. |
WU J J, YANG J, HAN Y L, et al. Research Status and Development Trend of Aircraft Management System[C]∥Proceedings of the Ninth Aviation Society of China Youth Science and Technology Forum. Beijing: Chinese Society of Aeronautics and Astronautics, 2020: 893-901 (in Chinese). | |
42 | FAA. Performance based navigation strategy 2016(PBN NAS)[R]. Washington, D.C.: FAA, 2016. |
43 | 中国民用航空局. 中国民航基于性能的导航路线图 [S]. 北京: 中国民用航空局, 2009: 10. |
CAAC. Roadmap for performance based navigation in China [S]. Beijing: CAAC, 2009: 10 (in Chinese). | |
44 | 吕小平. RNP/RNAV技术应用的效益分析[J]. 中国民用航空, 2008(4): 42-44. |
LV X P. Benefit analysis of RNP/RNAV application[J]. China Civil Aviation, 2008(4): 42-44 (in Chinese). | |
45 | LEE P U, IDRIS H, HELTON D, et al. Integrated trajectory-based operations for traffic flow management in an increasingly diverse future air traffic operations[C]∥2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2019: 1-9. |
46 | LIU Z A, XIAO G, HONG J, et al. A collaborative trajectory management framework in case of single pilot operation disability: considering the overall safety of air traffic system[C]∥ 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2021: 1-5. |
47 | MONDOLONI S. Trajectory-based operations—robust planning under trajectory uncertainty[C]∥ 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2016: 1-10. |
48 | ARINC. Advanced flight management computer system: ARINC 702-5 [S]. Annapolis City: ARINC, 2018. |
49 | LU X D, MORIOKA K, KANADA N, et al. 4D trajectory negotiation to achieve situational and operational awareness for air traffic management[C]∥ 2023 IEEE 15th International Symposium on Autonomous Decentralized System (ISADS). Piscataway: IEEE Press, 2023: 1-6. |
50 | 卢奕羽. 初始飞行计划4D航迹生成及仿真系统研究[D]. 南京: 南京航空航天大学, 2014. |
LU Y Y. Research on the initial flight Plan4D trajectory generating and simulation system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese). | |
51 | RTCA. Minimum aviation system performance standards: required navigation performance for area navigation: DO-236 [S]. Washington, D.C.: RTCA, 2013. |
52 | 任仲贤. 大型民机飞行管理系统仿真研究[D]. 南京: 南京航空航天大学, 2018. |
REN Z X. Simulation research of flight management system of large civil aircraft[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
53 | 张泽栋. 面向程序训练器设计的飞行管理系统仿真技术研究[D]. 天津: 中国民航大学, 2022. |
ZHANG Z D. Research on flight management system simulation technology for program trainer design[D]. Tianjin: Civil Aviation University of China, 2022 (in Chinese). | |
54 | 高健博. 民航飞机与飞行管理系统设计[J]. 电脑知识与技术, 2018, 14(3): 113-115. |
GAO J B. Design of civil aviation aircraft and flight management system[J]. Computer Knowledge and Technology, 2018, 14(3): 113-115 (in Chinese). | |
55 | 王悦, 谷宇, 王成汗. 民用航空导航技术浅析[C]∥中国航空学会, 中国航空研究院. 2018(第七届)民用飞机航电国际论坛论文集. 2018: 193-195. |
WANG Y, GU Y, WANG C H. Brief analysis of civil aviation navigation technology[C]∥Chinese Society of Aeronautics and Astronautics, AVIC Manufacturing Technology Institute. Proceedings of the 2018 (7th) Civil Aircraft Avionics International Forum. 2018: 193-195 (in Chinese). | |
56 | 田润, 崔志颖, 张爽娜, 等. 基于低轨通信星座的导航增强技术发展概述[J]. 导航定位与授时, 2021, 8(1): 66-81. |
TIAN R, CUI Z Y, ZHANG S N, et al. Overview of navigation augmentation technology based on LEO[J]. Navigation Positioning and Timing, 2021, 8(1): 66-81 (in Chinese). | |
57 | 王贺, 尹玉昂. 卫星导航星基增强系统概述[J]. 中国无线电, 2022(11): 33-35, 39. |
WANG H, YIN Y A. Overview of satellite-based augmentation system for satellite navigation[J]. China Radio, 2022(11): 33-35, 39 (in Chinese). | |
58 | 钱君, 于超鹏, 刘睿. 民用飞机环境综合监视系统的发展及设计考虑[C]∥第九届长三角科技论坛——航空航天科技创新与长三角经济转型发展分论坛论文集. 2012:15-20. |
QIAN J, YU C P, LIU R. Development and design considerations of civil aircraft integrated surveillance system[C]∥9th Yangtze River Delta Science and Technology Forum - Aerospace Science and Technology Innovation and Economic Transformation and Development Sub-forum. 2012:15-20 (in Chinese). | |
59 | ARINC. Integrated surveillance system (ISS): ARINC 768 [S]. Annapolis City: ARINC, 2005. |
60 | 何进. 民用飞机机载监视系统发展综述[J]. 电讯技术, 2014, 54(7): 1025-1030. |
HE J. Development summarization of airborne surveillance system for civil aircraft[J]. Telecommunication Engineering, 2014, 54(7): 1025-1030 (in Chinese). | |
61 | 谢梦涛. 机载综合监视系统概论[J]. 科技创新导报, 2011, 8(32): 86-87. |
XIE M T. Introduction to airborne integrated surveillance system[J]. Science and Technology Innovation Herald, 2011, 8(32): 86-87 (in Chinese). | |
62 | 中国民用航空局飞行标准司. 航空承运人使用地空数据通信系统的标准与指南: AC-121-FS-2018-016R3 [S]. 北京: 中国民用航空局, 2018. |
CAAC Flight Standard Division. Standards and guidelines of aviation operators to use the air-ground data communication system: AC-121-FS-2018-016R3 [S]. Beijing: CAAC, 2018 (in Chinese). | |
63 | 丁汀. 机载数据链通信系统综合调研、分析与设计考虑[J]. 民用飞机设计与研究, 2016(2): 69-74. |
DING T. Comprehensive investigation, analysis and design consideration of the onboard datalin communication system[J]. Civil Aircraft Design & Research, 2016(2): 69-74 (in Chinese). | |
64 | 宋金泽, 解丽荣. 民机数据链系统的设计考虑[J]. 科技创新导报, 2015, 12(22): 88-89. |
SONG J Z, XIE L R. Design considerations of civil aircraft data link system[J]. Science and Technology Innovation Herald, 2015, 12(22): 88-89 (in Chinese). | |
65 | 袁树德, 陆晓刚. 民用飞机数据链端系统通信协议分析[J]. 民用飞机设计与研究, 2016(2): 58-60. |
YUAN S D, LU X G. Analysis of communication protocol for datalink end system for civil aircraft[J]. Civil Aircraft Design & Research, 2016(2): 58-60 (in Chinese). | |
66 | 陆晓刚. 民用航空空地通信应用和发展[J]. 中国新通信, 2016, 18(5): 22-23. |
LU X G. Application and development of civil aviation air-ground communication[J]. China New Telecommunications, 2016, 18(5): 22-23 (in Chinese). | |
67 | 张军, 张彥仲. 空管航空电子技术新进展: 2011高技术发展报告[R]. 北京: 科学出版社, 2011. |
ZHANG J, ZHANG Y Z. New progress in air traffic control avionics technology: 2011 High Technology Development Report [R]. Beijing: Science Press, 2011. | |
68 | 张军. 现代空中交通管理[M]. 北京: 北京航空航天大学出版社, 2005. |
ZHANG J. Modern air traffic management[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2005 (in Chinese). | |
69 | 张舒黎, 石元兵, 王雍. 北斗短报文通信安全研究[J]. 通信技术, 2019, 52(11): 2776-2780. |
ZHANG S L, SHI Y B, WANG Y. Communication security of Beidou short messages[J]. Communications Technology, 2019, 52(11): 2776-2780 (in Chinese). | |
70 | SESAR. EWA04-1-T2-D1: Updated system specifications[S]. Belgium: SESAR, 2011: 111-112. |
71 | 朱永文, 喻兰辰晖. L波段数字航空通信系统研究[J]. 南京航空航天大学学报, 2022, 54(4): 700-714. |
ZHU Y W, YU L C H. Overview of L-band digital aeronautical communication system[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(4): 700-714 (in Chinese). | |
72 | 刘天华, 王丽, 林静, 等. 支持四维航迹运行的新一代民机数据链技术综述[J]. 电讯技术, 2023, 63(1): 145-150. |
LIU T H, WANG L, LIN J, et al. Overview of new generation civil aviation datalink technology supporting 4D trajectory based operation[J]. Telecommunication Engineering, 2023, 63(1): 145-150 (in Chinese). | |
73 | ARINC. Internet protocol suite (IPS) for aeronautical safety services roadmap document [S]. Annapolis City: ARINC, 2017: 43-50. |
74 | 韩营. ATG地空互联网技术, 开启空中互联网时代[EB/OL]. (2021-01-27)[2023-09-26]. . |
HAN Y. ATG ground-to-air Internet technology opens the era of airborne Internet[EB/OL]. (2021-01-27)[2023-09-26]. . | |
75 | 宿锐. 机载互连网络接入技术(ATG/SATCOM)[J]. 科学与技术, 2020(12). |
SU R. Onboard interconnection network access technology(ATG/SATCOM)[J]. Science and Technology, 2020(12)(in Chinese). | |
76 | 邱艺煌, 卞启龙, 徐浚哲, 等. 面向四维航迹运行的空地数据链架构设计[J]. 科技创新与应用, 2021, 11(29): 92-95. |
QIU Y H, BIAN Q L, XU J Z, et al. Design of air-ground data link architecture for four-dimensional track operation[J]. Technology Innovation and Application, 2021, 11(29): 92-95 (in Chinese). | |
77 | 邓潘, 张天舒, 刘建国, 等. 532 nm 和 355 nm 瑞利激光雷达观测中层大气的数据对比分析[J]. 红外与激光工程, 2016, 45(A02): 19-25. |
DENG P, ZHANG T S, LIU J G, et al. Comparative analysis of data from 532 nm and 355 nm Rayleigh lidar observations of the middle atmosphere[J]. Infrared and Laser Engineering, 2016, 45(A02): 19-25 (in Chinese). | |
78 | 岳亚洲, 李彬, 雷宏杰. 激光大气运动参数测量技术研究进展及展望(特邀)[J]. 光子学报, 2022, 51(4): 0428001. |
YUE Y Z, LI B, LEI H J. Advances and prospects of laser measurement technology for air motion parameters(invited)[J]. Acta Photonica Sinica, 2022, 51(4): 0428001 (in Chinese). | |
79 | 牛文生, 张军才. 信息技术改变飞行[N]. 中国航空报, 2012-11-20(T03版). |
NIU W S, ZHANG J C. Information technology changes flight[N]. China Aviation News, 2012-11-20(T03)(in Chinese). | |
80 | 曹全新. 机载信息系统的应用研究及发展趋势初探[J]. 民用飞机设计与研究, 2014(1): 72-76. |
CAO Q X. Application research and trend preliminary prediction about on-board information system[J]. Civil Aircraft Design & Research, 2014(1): 72-76 (in Chinese). | |
81 | 曹全新, 杨融, 孙志强, 等. 民用飞机网络安全问题与策略探究[J]. 网络安全技术与应用, 2016(12): 150-151, 153. |
CAO Q X, YANG R, SUN Z Q, et al. Research on network security problems and strategies of civil aircraft[J]. Network Security Technology & Application, 2016(12): 150-151, 153 (in Chinese). | |
82 | 孙志强, 曹全新. 民用飞机机载网络安保设计方法研究[J]. 装备制造技术, 2015(8): 158-160. |
SUN Z Q, CAO Q X. Network security technology for civil aircraft research[J]. Equipment Manufacturing Technology, 2015(8): 158-160 (in Chinese). | |
83 | 赵长啸, 汪克念, 张伟, 等. 民机航电系统功能-信息安全一体化分析方法[J]. 中国安全科学学报, 2022, 32(9): 49-56. |
ZHAO C X, WANG K N, ZHANG W, et al. Integrated analysis method of functional safety and cyber security of avionics system for civil aircraft[J]. China Safety Science Journal, 2022, 32(9): 49-56 (in Chinese). | |
84 | 任振东, 杜稀晖. 面向互联飞机的空天地网络一体化融合研[J]. 民用飞机设计与研究, 2022 (2): 137-143. |
REN Z D, DU X H. Research on the integration of air, space and ground networks for connected aircraft[J]. Civil Aircraft Design and Reserch, 2022 (2): 137-143 (in Chinese). | |
85 | AEEC. Commercial aircraft information security concepts of operation and process framework: ARINC 811 [S]. Washington, D.C.: RTCA, 2005. |
86 | 曹全新. 新一代民机航电系统初探[J]. 民用飞机设计与研究, 2010(1): 1-4, 9. |
CAO Q X. Preliminary study on the avionics system of a new generation of civil aircraft[J]. Civil Aircraft Design and Research, 2010(1): 1-4, 9 (in Chinese). | |
87 | 牛文生. 基于天地一体化信息网络的智能航空客运系统 [J]. 航空学报, 2019, 40(1): 522415. |
NIU W S. Intelligent air passenger transportation system utilizing integrated space-ground information network[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522415 (in Chinese). | |
88 | 吕小平. 电子飞行包(EFB)系统介绍[J]. 中国民用航空, 2007(10): 47-50. |
LV X P. An introduction to EFB system[J]. China Civil Aviation, 2007(10): 47-50 (in Chinese). | |
89 | 中国民用航空局. 中国民航新一代航空宽带通信技术路线图 [S]. 北京:中国民用航空局, 2021. |
CAAC. Roadmap for new generation aviation broadband communication technology of civil aviation in China [S]. Beijing: CAAC, 2021 (in Chinese). | |
90 | 宫伟祥. 驾驶舱打印机数据传输研究[J]. 飞机设计, 2017, 37(1): 76-80. |
GONG W X. Study on data transmission of cockpit printer[J]. Aircraft Design, 2017, 37(1): 76-80 (in Chinese) | |
91 | 周贵荣, 曹全新. 民用飞机客舱与机载信息系统[M]. 上海: 上海交通大学出版社, 2019: 28-30. |
ZHOU G R, CAO Q X. Cabin and onboard information system of civil aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2019: 28-30 (in Chinese). |
[1] | Changxiao ZHAO, Jun DAI, Fangzheng DONG, Daojun LI. Link safety criticality balanced scheduling for airborne time-sensitive network [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 328870-328870. |
[2] | Feng HE, Li ZHANG, Sifan YU, Xuan ZHOU. Schedulability analysis for multi-window partition based on network calculus model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 326581-326581. |
[3] | Feng HE, Ershuai LI, Xuan ZHOU, Luxi ZHAO. A review of airborne time sensitive networking [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 28165-028165. |
[4] | Chuanjun CAO, Tianyi LIU, Wei ZHU, Jinchun WANG. Technology development in high pressure compressor of civil high bypass-ratio turbofan engine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 27824-027824. |
[5] | LUO Qing, ZHANG Tao, SHAN Peng, ZHANG Wentao, LIU Zihao. Generating reconfiguration blueprints for IMA systems based on improved Q-learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525792-525792. |
[6] | HE Feng, LI Ershuai, ZHOU Xuan, LI Haoruo, GONG Zijie. Design optimization and evaluation method for time-triggered communication scheduling in airborne networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 324258-324258. |
[7] | ZHAO Changxiao, HE Feng, LI Hao, WANG Peng. Dynamic reconfiguration method based on effectiveness for advanced fighter avionics system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(6): 523416-523416. |
[8] | LIU Yanfang, LYU Jianghua, MA Shilong, LI Tao. Decoupling method for test process and test devices in parallel testing of avionics systems [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(8): 322818-322818. |
[9] | XU Jian, WU Lei, CHU Jiangping, HE Ke. Performance analysis of information reconfiguration technology on civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(2): 522442-522442. |
[10] | SHEN Zhengyang, CHEN Xiaoming, HUANG Lingcai. Challenges for aircraft design due to special mission models of large-scale amphibious aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522400-522400. |
[11] | YAN Fang, XING Peipei, ZHAO Changxiao, WANG Peng. Reliability modeling and analysis of DIMA system based on joint k/n(G) model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(6): 321971-321971. |
[12] | GAO Xiaoguang, XUE Yayong, WEN Zengkui. Task schedulability analyzing method of two-level hierarchical scheduling algorithm in integrated modular avionics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(2): 585-595. |
[13] | TAN Longhua, DU Chenglie, LEI Xin. Schedulability analysis for ARINC 653 partitioned real-time systems [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(11): 3698-3705. |
[14] | QU Yepin. Research on General Architecture of Avionics Mission System for Operational Support Aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(8): 2307-2318. |
[15] | WEI Jiali, JIA Yunfeng, XIE Shuguo, WU Zaohan. Complexity Assessment Method of Electromagnetic Environment for Avionic Systems [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(2): 487-496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341