Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (11): 531887.doi: 10.7527/S1000-6893.2025.31887
• Articles • Previous Articles
Yunxiang CHEN1,2,3, Jianping ZHANG1,2,4(
), Zhiyuan WANG2, Xiang ZOU2,4, Yifei ZHAO5, Tingfeng LAI2,4
Received:2025-02-24
Revised:2025-03-05
Accepted:2025-03-27
Online:2025-04-27
Published:2025-04-17
Contact:
Jianping ZHANG
E-mail:zhangjp@swjtu.edu.cn
Supported by:CLC Number:
Yunxiang CHEN, Jianping ZHANG, Zhiyuan WANG, Xiang ZOU, Yifei ZHAO, Tingfeng LAI. Safety separation calculation model for multi-rotor drones in low-altitude airspace based on avoidance strategy[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 531887.
Table 1
System total error calculation reference
| 状态 | 无人机速度/(m·s-1) | 风速/(m·s-1) | 延迟时间/s | 飞行技术误差/m | 导航精度误差/m | 系统总误差/m |
|---|---|---|---|---|---|---|
| 1 | 2 | 8 | 0.3 | 11.484 353 74 | 9.14 | 14.677 533 2 |
| 2 | 4 | 8 | 0.3 | 12.084 353 74 | 9.14 | 15.151 607 35 |
| 3 | 6 | 8 | 0.3 | 12.684 353 74 | 9.14 | 15.634 334 97 |
| 4 | 8 | 8 | 0.3 | 13.284 353 74 | 9.14 | 16.124 938 89 |
| 5 | 10 | 8 | 0.3 | 13.884 353 74 | 9.14 | 16.622 721 76 |
| 6 | 12 | 8 | 0.3 | 14.484 353 74 | 9.14 | 17.120 504 63 |
Table 3
Simulation experiment results of dual aircrafts avoidance interval
| 参数 | 实验1 | 实验2 | 实验3 | 实验4 | 实验5 |
|---|---|---|---|---|---|
| 无人机1速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机2速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机1最大转弯角/(°) | 30 | 30 | 30 | 30 | 30 |
| 无人机1最大转弯率/((°)·s-1) | 162.26 | 81.13 | 54.09 | 40.56 | 32.45 |
| 无人机1转弯半径/m | 0.706 239 | 2.824 955 | 6.356 15 | 11.299 8 | 17.655 97 |
| 无人机2最大转弯角/(°) | 25 | 25 | 25 | 25 | 25 |
| 无人机2最大转弯率/((°)·s-1) | 128.79 | 64.39 | 42.93 | 32.2 | 25.76 |
| 无人机2转弯半径/m | 0.889 779 | 3.559 115 | 8.008 01 | 14.236 5 | 22.244 47 |
| PCA设置/m | 14.68 | 15.15 | 15.63 | 16.12 | 16.62 |
| 机动避让间隔davoid/m | 15.44 | 18.18 | 22.46 | 28.25 | 35.57 |
| 避让间隔均值 | 24.18 | ||||
| 避让间隔标准差 | 7.23 | ||||
Table 4
Simulation experiment results of three-aircrafts avoidance interval
| 参数 | 实验1 | 实验2 | 实验3 | 实验4 | 实验5 |
|---|---|---|---|---|---|
| 无人机1速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机2速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机3速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机1最大转弯角/(°) | 30 | 30 | 30 | 30 | 30 |
| 无人机1最大转弯率/((°)·s-1) | 162.26 | 81.13 | 54.09 | 40.56 | 32.45 |
| 无人机1转弯半径/m | 0.706 239 | 2.824 955 | 6.356 15 | 11.299 82 | 17.655 97 |
| 无人机2最大转弯角/(°) | 25 | 25 | 25 | 25 | 25 |
| 无人机2最大转弯率/((°)·s-1) | 25.76 | 64.39 | 42.93 | 32.2 | 25.76 |
| 无人机2转弯半径/m | 0.889 779 | 3.559 115 | 8.008 008 | 14.236 46 | 22.244 47 |
| 无人机3最大转弯角/(°) | 30 | 30 | 30 | 30 | 30 |
| 无人机3最大转弯率/((°)·s-1) | 162.26 | 81.13 | 54.09 | 40.56 | 32.45 |
| 无人机3转弯半径/m | 0.706 239 | 2.824 955 | 6.356 15 | 11.299 82 | 17.655 97 |
| PCA设置/m | 14.68 | 15.15 | 15.63 | 16.12 | 16.62 |
| 避让间隔davoid/m | 15.42 | 18.11 | 22.29 | 27.96 | 35.11 |
| 避让间隔均值 | 23.78 | ||||
| 避让间隔标准差 | 7.07 | ||||
Table 5
Simulation experiment results of four-aircrafts avoidance interval
| 参数 | 实验1 | 实验2 | 实验3 | 实验4 | 实验5 |
|---|---|---|---|---|---|
| 无人机1速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机2速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机3速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机4速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机1最大转弯角/(°) | 30 | 30 | 30 | 30 | 30 |
| 无人机1最大转弯率/((°)·s-1) | 162.26 | 81.13 | 54.09 | 40.56 | 32.45 |
| 无人机1转弯半径/m | 0.706 239 | 2.824 955 | 6.356 15 | 11.299 82 | 17.655 97 |
| 无人机2最大转弯角/(°) | 25 | 25 | 25 | 25 | 25 |
| 无人机2最大转弯率/((°)·s-1) | 25.76 | 64.39 | 42.93 | 32.2 | 25.76 |
| 无人机2转弯半径/m | 0.889 779 | 3.559 115 | 8.008 008 | 14.236 46 | 22.244 47 |
| 无人机3最大转弯角/(°) | 30 | 30 | 30 | 30 | 30 |
| 无人机3最大转弯率/((°)·s-1) | 162.26 | 81.13 | 54.09 | 40.56 | 32.45 |
| 无人机3转弯半径/m | 0.706 239 | 2.824 955 | 6.356 15 | 11.299 82 | 17.655 97 |
| 无人机4最大转弯角/(°) | 25 | 25 | 25 | 25 | 25 |
| 无人机4最大转弯率/((°)·s-1) | 25.76 | 64.39 | 42.93 | 32.2 | 25.76 |
| 无人机4转弯半径/m | 0.889 779 | 3.559 115 | 8.008 008 | 14.236 46 | 22.244 47 |
| PCA设置/m | 14.68 | 15.15 | 15.63 | 16.12 | 16.62 |
| 避让间隔davoid/m | 17.04 | 20.23 | 25.2 | 31.97 | 40.52 |
| 避让间隔均值μ/m | 26.99 | ||||
| 避让间隔标准差σ | 9.43 | ||||
Table 6
Simulation experiment results of five-aircrafts avoidance interval
| 参数 | 实验1 | 实验2 | 实验3 | 实验4 | 实验5 |
|---|---|---|---|---|---|
| 无人机1速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机2速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机3速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机4速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机5速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机1最大转弯角/(°) | 30 | 30 | 30 | 30 | 30 |
| 无人机1最大转弯率((°)·s-1) | 162.26 | 81.13 | 54.09 | 40.56 | 32.45 |
| 无人机1转弯半径/m | 0.706 239 | 2.824 955 | 6.356 15 | 11.299 82 | 17.655 97 |
| 无人机2最大转弯角/(°) | 25 | 25 | 25 | 25 | 25 |
| 无人机2最大转弯率((°)·s-1) | 25.76 | 64.39 | 42.93 | 32.2 | 25.76 |
| 无人机2转弯半径/m | 0.889 779 | 3.559 115 | 8.008 008 | 14.236 46 | 22.244 47 |
| 无人机3最大转弯角/(°) | 30 | 30 | 30 | 30 | 30 |
| 无人机3最大转弯率((°)·s-1) | 162.26 | 81.13 | 54.09 | 40.56 | 32.45 |
| 无人机3转弯半径/m | 0.706 239 | 2.824 955 | 6.356 15 | 11.299 82 | 17.655 97 |
| 无人机4最大转弯角/(°) | 25 | 25 | 25 | 25 | 25 |
| 无人机4最大转弯率((°)·s-1) | 25.76 | 64.39 | 42.93 | 32.2 | 25.76 |
| 无人机4转弯半径/m | 0.889 779 | 3.559 115 | 8.008 008 | 14.236 46 | 22.244 47 |
| 无人机5最大转弯角/(°) | 25 | 25 | 25 | 25 | 25 |
| 无人机5最大转弯率((°)·s-1) | 25.76 | 64.39 | 42.93 | 32.2 | 25.76 |
| 无人机5转弯半径/m | 0.889 779 | 3.559 115 | 8.008 008 | 14.236 46 | 22.244 47 |
| PCA设置/m | 14.68 | 15.15 | 15.63 | 16.12 | 16.62 |
| 避让间隔davoid/m | 18.51 | 21.75 | 26.78 | 33.61 | 42.22 |
| 避让间隔均值μ/m | 28.57 | ||||
| 避让间隔标准差σ | 9.52 | ||||
Table 7
Experiment on avoidance interval between three aircrafts under strong wind and other environmental interference
| 参数 | 实验1 | 实验2 | 实验3 | 实验4 | 实验5 |
|---|---|---|---|---|---|
| 无人机1速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机2速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机3速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机4速度/(m·s-1) | 2 | 4 | 6 | 8 | 10 |
| 无人机1最大转弯角/(°) | 30 | 30 | 30 | 30 | 30 |
| 无人机1最大转弯率/((°)·s-1) | 162.26 | 81.13 | 54.09 | 40.56 | 32.45 |
| 无人机1转弯半径/m | 0.706 239 | 2.824 955 | 6.356 15 | 11.299 82 | 17.655 97 |
| 无人机2最大转弯角/(°) | 25 | 25 | 25 | 25 | 25 |
| 无人机2最大转弯率/((°)·s-1) | 25.76 | 64.39 | 42.93 | 32.2 | 25.76 |
| 无人机2转弯半径/m | 0.889 779 | 3.559 115 | 8.008 008 | 14.236 46 | 22.244 47 |
| 无人机3最大转弯角/(°) | 30 | 30 | 30 | 30 | 30 |
| 无人机3最大转弯率/((°)·s-1) | 162.26 | 81.13 | 54.09 | 40.56 | 32.45 |
| 无人机3转弯半径/m | 0.706 239 | 2.824 955 | 6.356 15 | 11.299 82 | 17.655 97 |
| 风速干扰 | 随机风向,0~5 m/s随机风速 | ||||
| 系统延迟 | 50~200 ms随机 | ||||
| PCA设置/m | 14.68 | 15.15 | 15.63 | 16.12 | 16.62 |
Table 8
Calculation of safety interval between two unmanned aerial vehicles
避让间隔 均值 | 避让间隔标准差 | 接近率/(m·s-1) | 系统延迟时间/s | 操纵员反应时间/s | 航迹刷新时间/s | 安全 间隔/m | 碰撞风险(计算Z值后查询正态分布表) | 是否接受安全目标水平( |
|---|---|---|---|---|---|---|---|---|
| 24.18 | 7.23 | 4 | 3.4 | 5.2 | 2 | 42.4 | Z=2.52/约0.56%概率碰撞 | 不可接受 |
| 8 | 84.8 | Z=5.87/约0概率碰撞 | 可接受 | |||||
| 12 | 127.2 | Z=8.39/约0概率碰撞 | 可接受 | |||||
| 16 | 169.6 | Z=14.26/约0概率碰撞 | 可接受 | |||||
| 20 | 212 | Z=20.1/约0概率碰撞 | 可接受 |
| [1] | FAA. Nextgen concept of operations for urban air mo-bility (UAM) v1.0[R].Washington, D.C.: FAA, 2020. |
| [2] | FAA. Urban air mobility (UAM) concept of operations0[R]. Washington, D.C.: FAA, 2023. |
| [3] | SESAR 3 JU. U-space CONOPS 4th Edition[EB/OL]. [2023-09-07]. . |
| [4] | BAURANOV A, RAKAS J. Designing airspace for urban air mobility: A review of concepts and approaches[J]. Progress in Aerospace Sciences, 2021, 125: 100726. |
| [5] | 中国民用航空总局. 2023年民航行业发展统计公报[EB/OL].[2025-03-12]. . |
| Civil Aviation Administration of China. Statistical communiqué on the development of civil aviation industry in 2023 [EB/OL]. [2025-03-12]. . | |
| [6] | 国务院, 中央军委. 无人驾驶航空器飞行管理暂行条例[J]. 中华人民共和国国务院公报, 2023(20): 6-16. |
| The State Council of the People’s Republic of China, The Central Military Commission of the Communist Party of china. Interim regulations on flight management of unmanned aerial vehicles[J]. Gazette of the State Council of the People’s Republic of China, 2023(20): 6-16 (in Chinese). | |
| [7] | 中国民用航空局. 民用无人驾驶航空器运行安全管理规则[J]. 中华人民共和国国务院公报, 2024(9): 36-85. |
| Civil Aviation Administration of China. Civil unmanned aerial vehicle operation safety management rules[J]. Gazette of the State Council of the People’s Republic of China, 2024(9): 36-85 (in Chiness). | |
| [8] | 张建平, 张翔, 邹翔, 等.无人机管控及应用服务体系建设[EB/OL].(2021-08-11).[2025-05-25].. |
| ZHANG J P, ZHANG X, ZOU X, et al. Construction of UAV control and application service system[EB/OL].(2021-08-11). [2025-05-25]. (in Chinese). | |
| [9] | 陈义友, 张建平, 邹翔, 等. 民用无人机交通管理体系架构及关键技术[J]. 科学技术与工程, 2021, 21(31): 13221-13237. |
| CHEN Y Y, ZHANG J P, ZOU X, et al. System framework and key technologies of civil unmanned aircraft system traffic management[J]. Science Technology and Engineering, 2021, 21(31): 13221-13237 (in Chinese). | |
| [10] | ICAO. A unified framework for collision risk modelling in support of the manual on airspace planning methodology for the determination of separation minima: Doc 9689[R]. Montreal: ICAO, 1998. |
| [11] | REICH P G. Analysis of long-range air traffic systems: Separation standards-I[J]. Journal of Navigation, 1997, 50(3): 436-447. |
| [12] | BROOKER P. Lateral collision risk in air traffic track systems: A‘post-Reich’ event model[J]. Journal of Navigation, 2003, 56(3): 399-409. |
| [13] | BROOKER P. Longitudinal collision risk for ATC track systems: A hazardous event model[J]. Journal of Navigation, 2006, 59(1): 55-70. |
| [14] | 徐肖豪, 李冬宾, 李雄. 飞行间隔安全评估研究[J]. 航空学报, 2008, 29(6): 1411-1418. |
| XU X H, LI D B, LI X. Research on safety assessment of flight separation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1411-1418 (in Chinese). | |
| [15] | 徐肖豪, 王振宇, 赵鸿盛. 基于Event的侧向碰撞风险改进模型[J]. 中国民航大学学报, 2008, 26(3): 1-4. |
| XU X H, WANG Z Y, ZHAO H S. Improved lateral collision risk model based on event[J]. Journal of Civil Aviation University of China, 2008, 26(3): 1-4 (in Chinese). | |
| [16] | 张洪海, 李博文, 刘皞, 等. 自由空域下多旋翼无人机安全间隔标定方法[J]. 系统工程与电子技术, 2023, 45(10): 3149-3156. |
| ZHANG H H, LI B W, LIU H, et al. Demarcation method of safety separation for multi-rotor UAV in free airspace[J]. Systems Engineering and Electronics, 2023, 45(10): 3149-3156 (in Chinese). | |
| [17] | 王兴隆, 王友杰. 基于改进Event模型的多旋翼型eVTOL垂直间隔安全评估方法[J]. 交通信息与安全, 2024, 42(1): 19-27. |
| WANG X L, WANG Y J. A safety evaluation of vertical separation for multi-rotor eVTOL based on an improved event model[J]. Journal of Transport Information and Safety, 2024, 42(1): 19-27 (in Chinese). | |
| [18] | 王兴隆, 王友杰. 面向城市低空的多机型eVTOL安全间隔评估[J]. 航空学报, 2025, 46(1): 330604. |
| WANG X L, WANG Y J. Safety interval evaluation for multi-aircraft eVTOL in urban low altitude[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 330604 (in Chinese). | |
| [19] | PUCHOL C C, VICO NAVARRO J, CHUQUITARCO-JIMÉNEZ C A, et al. BUBBLES separation management environment: Architecture and validation of a separation management tool for UTM[C]∥2023 Integrated Communication, Navigation and Surveillance Conference (ICNS). Piscataway: IEEE Press, 2023: 1-10. |
| [20] | 刘继新, 蒋伶潇, 刘禹汐, 等. 无人机冲突探测与解脱技术研究概述[J]. 科学技术与工程, 2023, 23(26): 11081-11089. |
| LIU J X, JIANG L X, LIU Y X, et al. Review of unmanned aerial vehicle conflict detection and resolution technology[J]. Science Technology and Engineering, 2023, 23(26): 11081-11089 (in Chinese). | |
| [21] | FREMOND R, XU Y, INALHAN G. Application of an autonomous multi-agent system using proximal policy optimisation for tactical deconfliction within the urban airspace[C]∥2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2022: 1-10. |
| [22] | HUANG C, PETRUNIN I, TSOURDOS A. Strategic conflict management using recurrent multi-agent reinforcement learning for urban air mobility operations considering uncertainties[J]. Journal of Intelligent & Robotic Systems, 2023, 107(2): 20. |
| [23] | MURÇA M C R. Identification and prediction of urban airspace availability for emerging air mobility operations[J]. Transportation Research Part C: Emerging Technologies, 2021, 131: 103274. |
| [24] | PUCHOL C C, VÉLEZ N V, TEJEDOR J V B, et al. BUBBLES: A new concept of operations for separation management in the U-space[J]. Journal of Physics: Conference Series, 2023, 2526(1): 012092. |
| [25] | Union European. Algorithm for analysing the collision risk: SESAR-ER4-31-2019[R].European Union, 2021. |
| [26] | ZOU Y Y, ZHANG H H, ZHONG G, et al. Collision probability estimation for small unmanned aircraft systems[J]. Reliability Engineering & System Safety, 2021, 213: 107619. |
| [27] | LEE S, ABRAMSON M, PHILLIPS J D, et al. Preliminary analysis of separation standards for urban air mobility using unmitigated fast-time simulation[C]∥2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2022: 1-10. |
| [28] | 陈艺君, 余莎莎, 张学军. 城市低空场景下无人机运行对地风险量化评估[J]. 北京航空航天大学学报, 2025, 51(3): 806-815. |
| CHEN Y J, YU S S, ZHANG X J. Ground risk quantitative assessment for UAV operations in urban low-altitude scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics, 2025, 51(3): 806-815 (in Chinese). | |
| [29] | 张洪海, 严勇杰, 邹依原, 等. 无人机安全风险评估指标及方法[J]. 指挥信息系统与技术, 2022, 13(2): 56-62, 90. |
| ZHANG H H, YAN Y J, ZOU Y Y, et al. Safety risk assessment index and assessment method for unmanned aerial vehicles[J]. Command Information System and Technology, 2022, 13(2): 56-62, 90 (in Chinese). | |
| [30] | CHEN C, EDWARDS M W, GILL B, et al. Defining well clear separation for unmanned aircraft systems operating with noncooperative aircraft[C]∥AIAA Aviation 2019 Forum. AIAA, 2019. |
| [31] | MANFREDI G, JESTIN Y. Are you clear about “well clear”?[C]∥2018 International Conference on Unmanned Aircraft Systems, 2018. |
| [32] | JARUS. JARUS guidelines on specific operations risk assessment (SORA): JAR-DEL-WG6-D.04[R]. Washington, D.C.: JARUS, 2016. |
| [33] | SUN R, ZHANG Y C, YE B J, et al. A required navigation performance based approach to monitor the accuracy and integrity performance of UAVs for delivery applications[C]∥China Satellite Navigation Conference, 2018. |
| [34] | 程琦, 孙蕊, 张文宇, 等. 无人机快递RNP的总系统误差建模及灵敏度分析[C]∥第十届中国卫星导航年会论, 2019. |
| CHENG Q, SUN R, ZHANG W Y,et al. Modeling and sensitivity analysis of total system error of UAV express RNP[C]∥Proceedings of the 10th China Satellite Navigation Annual Conference, 2019 (in Chinese). | |
| [35] | 范龙, 柴洪洲. 北斗二代卫星导航系统定位精度分析方法研究[J]. 海洋测绘, 2009, 29(1): 25-27, 45. |
| FAN L, CHAI H Z. Study on method of analyzing the positioning accuracy of Beidou 2nd generation satellite navigation system[J]. Hydrographic Surveying and Charting, 2009, 29(1): 25-27, 45 (in Chinese). | |
| [36] | 徐沛宁, 陈荣伟, 张静, 等. 北斗单频星基增强服务性能初步评估[J]. 导航定位学报, 2023, 11(3): 90-95. |
| XU P N, CHEN R W, ZHANG J, et al. Preliminary performance analysis of BDSBAS-B1C over China[J]. Journal of Navigation and Positioning, 2023, 11(3): 90-95 (in Chinese). |
| [1] | Juntong WANG, Danwen BAO, Jiayi ZHOU, Jingxuan SHANG, Ziqian ZHANG. Low-altitude airspace planning: A review and prospect [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 530879-530879. |
| [2] | Xinglong WANG, Youjie WANG. Safety interval evaluation for multi-aircraft eVTOL in urban low altitude [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 330604-330604. |
| [3] | Zihan JIN, Changxuan WEN, Dong QIAO. Impact analysis of satellite debris cloud on low-orbit constellation [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730601-730601. |
| [4] | Yunpeng CAI, Dapeng ZHOU, Jiangchuan DING. Intelligent collaborative control of UAV swarms with collision avoidance safety constraints [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529683-529683. |
| [5] | Zhu WANG, Mengtong ZHANG, Zhenpeng ZHANG, Guangtong XU. Multi-UAV cooperative path planning based on multi-index dynamic priority [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328816-328816. |
| [6] | Qihui WU, Chao DONG, Ziye JIA, Can CUI, Simeng FENG, Fuhui ZHOU, Hua XIE. Networking and control mechanism for low-altitude intelligent networks [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28809-028809. |
| [7] | Xiaohan LIAO, Wenqiu QU, Chenchen XU, Hongbo HE, Junwei WANG, Weibo SHI. A review of urban air mobility and its new infrastructure low⁃altitude public routes [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 28521-028521-. |
| [8] | LIU Haitao, WANG Songlin, QIN Dingben, LI Dongxia. Performance analysis of surveillance capacity of satellite-based ADS-B receiver [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(5): 321866-321866. |
| [9] | CHEN Weishi, LI Jing. Radar target detection in low-altitude airspace with spatial features [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(9): 3060-3068. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

