Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (23): 629016-629016.doi: 10.7527/S1000-6893.2023.29016
• Special Topic: Reusable Launch Vehicle Technology • Previous Articles Next Articles
Zehao CHEN, Hui CHEN(), Yushan GAO, Hang ZHANG
Received:
2023-05-18
Revised:
2023-06-04
Accepted:
2023-07-03
Online:
2023-12-15
Published:
2023-07-14
Contact:
Hui CHEN
E-mail:chenhui2013abc@163.com
Supported by:
CLC Number:
Zehao CHEN, Hui CHEN, Yushan GAO, Hang ZHANG. Review and prospect of model-based fault diagnosis technology for liquid rocket engines[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629016-629016.
1 | 包为民, 汪小卫, 董晓琳. 航班化航天运输系统对动力的发展需求与技术挑战[J]. 火箭推进, 2021, 47(4): 1-5. |
BAO W M, WANG X W, DONG X L. Development demands and challenges of propulsion technology for space transportation system in airline-flight-mode[J]. Journal of Rocket Propulsion, 2021, 47(4): 1-5 (in Chinese). | |
2 | 张蒙正, 张玫. 航天运载器重复使用液体动力若干问题探讨[J]. 火箭推进, 2019, 45(4): 9-15. |
ZHANG M Z, ZHANG M. Discussion on some problems of reusable liquid-propellant engine[J]. Journal of Rocket Propulsion, 2019, 45(4): 9-15 (in Chinese). | |
3 | RYAZANOV M. SSME schematic[EB/OL]. Washington, D.C.: NASA, 2015. (2016-05-23)[2023-05-17]. . |
4 | WILLIAMS W C, HIMMEL S C, MOBLEY T B, et al. Report of the SSME assessment team: NASA-TM-108217[R]. Washington, D.C.: NASA, 1993. |
5 | DAVIDSON M, STEPHENS J. Advanced health management system for the space shuttle main engine: AIAA-2004-3912[R]. Reston: AIAA, 2004. |
6 | 张振臻, 陈晖, 高玉闪, 等. 液体火箭发动机故障诊断技术综述[J]. 推进技术, 2022, 43(6): 20-38. |
ZHANG Z Z, CHEN H, GAO Y S, et al. Review on fault diagnosis technology of liquid rocket engine[J]. Journal of Propulsion Technology, 2022, 43(6): 20-38 (in Chinese). | |
7 | TULPULE S. Pattern classification approach to rocket engine diagnostics: AIAA-1989-2850[R]. Reston: AIAA, 1989. |
8 | ALI M, GUPTA U. An expert system for fault diagnosis in a Space Shuttle main engine: AIAA-1990-1890[R]. Reston: AIAA, 1990. |
9 | 张楠, 孙慧娟. 低温液体火箭发动机重复使用技术分析[J]. 火箭推进, 2020, 46(6): 1-12. |
ZHANG N, SUN H J. Analysis on the reusable cryogenic liquid rocket engine technology[J]. Journal of Rocket Propulsion, 2020, 46(6): 1-12 (in Chinese). | |
10 | 李斌, 陈晖, 蒲星星, 等. 大推力液体火箭发动机涡轮泵实时故障监控方法: CN112377333B[P]. 2021-11-16. |
LI B, CHEN H, PU X X, et al. Real-time fault monitoring method for turbine pump of high-thrust liquid rocket engine: CN112377333B[P]. 2021-11-16 (in Chinese). | |
11 | LI B. Research on key technologies for reusable liquid rocket engines[J]. Aerospace China, 2022, 23(4): 24-34. |
12 | 吴建军, 朱晓彬, 程玉强, 等. 液体火箭发动机智能健康监控技术研究进展[J]. 推进技术, 2022, 43(1): 7-19. |
WU J J, ZHU X B, CHENG Y Q, et al. Research progress of intelligent health monitoring technology for liquid-propellant rocket engines[J]. Journal of Propulsion Technology, 2022, 43(1): 7-19 (in Chinese). | |
13 | 王珺, 吕海鑫, 陈景龙, 等. 液体火箭发动机健康状态智能检测方法[J]. 火箭推进, 2021, 47(4): 52-58. |
WANG J, LYU H X, CHEN J L, et al. Intelligent detection method of liquid rocket engine health state[J]. Journal of Rocket Propulsion, 2021, 47(4): 52-58 (in Chinese). | |
14 | 张惠军. 液体火箭发动机故障检测与诊断技术综述[J]. 火箭推进, 2004, 30(5): 40-45. |
ZHANG H J. Study on liquid rocket engine fault detection and diagnostic technology[J]. Journal of Rocket Propulsion, 2004, 30(5): 40-45 (in Chinese). | |
15 | 颜子初. 液体火箭发动机状态监控与故障诊断技术的发展[J]. 导弹与航天运载技术, 1994(2): 8-17. |
YAN Z C. The development of condition monitoring and failure diagnostic technique for liquid propellant rocket engines[J]. Missiles and Space Vehicles, 1994(2): 8-17. (in Chinese) | |
16 | MACGREGOR C A. Reusable rocket engine maintenance study: NASA-CR-165569[R]. Washington, D.C.: NASA, 1982. |
17 | NORMAN A, NEMETH E. Development of a health monitoring algorithm: AIAA-1990-1991[R]. Reston: AIAA, 1990. |
18 | 杨尔辅, 张振鹏, 刘国球, 等. YF-75发动机状态监控与故障诊断工程应用系统的研制[J]. 推进技术, 1997, 18(1): 65-72. |
YANG E F, ZHANG Z P, LIU G Q, et al. Development of an engineering application system for condition moni-toring and fault diagnosis of YF-75 engine[J]. Journal of Propulsion Technology, 1997, 18(1): 65-72 (in Chinese). | |
19 | 谭松林, 陈祖奎. 液体火箭发动机典型故障类型及将来的传感器检测策略[J]. 火箭推进, 2003, 29(4): 30-34. |
TAN S L, CHEN Z K. Typical fault types of liquid rocket engine and sensor detection strategy in the future[J]. Journal of Rocket Propulsion, 2003, 29(4): 30-34 (in Chinese). | |
20 | 杨尔辅, 张振鹏, 崔定军. 液发推力室和涡轮泵故障监测与诊断技术研究[J]. 北京航空航天大学学报, 1999, 25(5): 619-622. |
YANG E F, ZHANG Z P, CUI D J. Study on fault monitoring and diagnosis techniques for thrust chamber and turbo pump systems of liquid rocket engines[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(5): 619-622 (in Chinese). | |
21 | NEMETH E. Health management system for rocket engines: NASA-CR-185223[R]. Washington, D.C.: NASA, 1990. |
22 | 蔡益飞. 某液体火箭发动机故障仿真分析[J]. 上海航天, 2004, 21(5): 34-38. |
CAI Y F. The simulation analysis of some liquid rocket engine fault[J]. Aerospace Shanghai, 2004, 21(5): 34-38 (in Chinese). | |
23 | 张箭, 巩岩博, 刘忠恕, 等. 大推力氢氧发动机故障仿真与试验研究[J]. 深空探测学报(中英文), 2021, 8(4): 389-398. |
ZHANG J, GONG Y B, LIU Z S, et al. Fault simulation and experimental study on high-thrust LOX/LH2 rocket engine[J]. Journal of Deep Space Exploration, 2021, 8(4): 389-398 (in Chinese). | |
24 | 吴建军, 张育林, 陈启智. 大型泵压式液体火箭发动机故障综合分析[J]. 导弹与航天运载技术, 1996(1): 10-15. |
WU J J, ZHANG Y L, CHEN Q Z. Fault analysis for large liquid rocket engine with turbopump system[J]. Missiles and Space Vehicles, 1996(1): 10-15 (in Chinese). | |
25 | KOLCIO K, HELMICKI A, JAWEED S. Propulsion system modeling for condition monitoring and control: Part I, theoretical foundations: AIAA-1994-3227[R]. Reston: AIAA, 1994. |
26 | KOLCIO K, HELMICKI A J. Propulsion system modeling for condition monitoring and control: Part II, application to the SSME: AIAA-1994-3228[R]. AIAA, 1994. |
27 | 吴建军, 张育林, 陈启智. 液体火箭发动机稳态故障仿真及分析[J]. 推进技术, 1994, 15(3): 6-13. |
WU J J, ZHANG Y L, CHEN Q Z. Steady fault simulation and analysis of liquid rocket engine[J]. Journal of Propulsion Technology, 1994, 15(3): 6-13 (in Chinese). | |
28 | 吴建军, 张育林, 陈启智. 液体火箭发动机故障特性动态模拟[J]. 航空动力学报, 1994, 9(4): 361-365. |
WU J J, ZHANG Y L, CHEN Q Z. Transient performance simulation of a large liquid rocket engine under fault conditions[J]. Journal of Aerospace Power, 1994, 9(4): 361-365 (in Chinese). | |
29 | WU J J, ZHANG Y L, CHEN Q Z. A real-time verification system on fault diagnosis methods for liquid propellant rocket engine: AIAA-1996-2831[R]. Reston: AIAA, 1996. |
30 | 陆曙军, 张育林. 液体火箭发动机故障实时仿真模型[J]. 推进技术, 1996, 17(5): 14-17. |
LU S J, ZHANG Y L. Real-time fault simulation model of liquid rocket engine[J]. Journal of Propulsion Technology, 1996, 17(5): 14-17 (in Chinese). | |
31 | 吴建军, 张育林, 陈启智. 液体火箭发动机实时故障仿真系统实现[J]. 推进技术, 1997, 18(1): 26-30. |
WU J J, ZHANG Y L, CHEN Q Z. The real-time fault simulation system for liquid propellant rocket engines[J]. Journal of Propulsion Technology, 1997, 18(1): 26-30 (in Chinese). | |
32 | 杨尔辅, 徐用懋, 张振鹏, 等. 液体火箭推进系统故障过程建模与仿真研究[J]. 清华大学学报(自然科学版), 2001, 41(3): 104-108. |
YANG E F, XU Y M, ZHANG Z P, et al. Modeling and simulations of the failure process for liquid propellant rocket propulsion systems[J]. Journal of Tsinghua University (Science and Technology), 2001, 41(3): 104-108 (in Chinese). | |
33 | CHA J, HA C, KOO J, et al. Dynamic simulation and analysis of the space shuttle main engine with artificially injected faults[J]. International Journal of Aeronautical and Space Sciences, 2016, 17(4): 535-550. |
34 | 邓晨, 薛薇, 郑孟伟, 等. 大推力氢氧补燃循环发动机故障仿真[J]. 计算机测量与控制, 2019, 27(11): 48-53, 57. |
DENG C, XUE W, ZHENG M W, et al. Fault simulation for heavy-lift LH2/LOX staged combustion cycle engine[J]. Computer Measurement & Control, 2019, 27(11): 48-53, 57 (in Chinese). | |
35 | 刘登丰. 氢氧膨胀循环发动机系统动态特性仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
LIU D F. Simulation on system dynamic characterisitcs of LOX/LH2 expander cycle engine[D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese). | |
36 | PARK S Y, AHN J. Deep neural network approach for fault detection and diagnosis during startup transient of liquid-propellant rocket engine[J]. Acta Astronautica, 2020, 177: 714-730. |
37 | 朱明清. 基于Modelica的液体火箭推进系统故障仿真及系统实现[D]. 武汉: 华中科技大学, 2016. |
ZHU M Q. Fault simulation and software development of liquid rocket propulsion system based on modelica[D]. Wuhan: Huazhong University of Science and Technology, 2016 (in Chinese). | |
38 | KAWATSU K. PHM by using multi-physics system-level modeling and simulation for EMAs of liquid rocket engine[C]∥ 2019 IEEE Aerospace Conference. Piscataway: IEEE Press, 2019. |
39 | NGUYEN D G. Engine balance and dynamic model: RL-00001[R]. Canoga Park: Rockwell International, 1981. |
40 | 吴建军, 黄强, 程玉强, 等. 液体火箭发动机故障检测诊断理论与方法[M]. 北京: 国防工业出版社, 2013. |
WU J J, HUANG Q, CHENG Y Q, et al. Theory and method of fault detection and diagnosis for liquid-propellant rocket engines[M]. Beijing: National Defense Industry Press, 2013 (in Chinese). | |
41 | DING S X. Model-based fault diagnosis techniques: Design schemes, algorithms and tools[M]. London: Springer, 2013. |
42 | 杨尔辅, 张振鹏, 刘国球. 一种推进系统故障诊断反问题模型与算法[J]. 北京航空航天大学学报, 1999, 25(6): 684-687. |
YANG E F, ZHANG Z P, LIU G Q. Model and algorithm of inverse problems on fault diagnosis for propulsion systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(6): 684-687 (in Chinese). | |
43 | TANIGUCHI M H. Failure control techniques for the SSME: NASA-CR-179224[R]. Washington, D.C.: NASA, 1987. |
44 | WALKER B, BAUMGARTNER E. Comparison of nonlinear smoothers and nonlinear estimators for rocket engine health monitoring: AIAA-1990-1891[R]: Reston: AIAA, 1990. |
45 | DUYAR A, ELDEM V, MERRILL W C, et al. State space representation of the open-loop dynamics of the space shuttle main engine[J]. Journal of Dynamic Systems, Measurement, and Control, 1991, 113(4): 684-690. |
46 | DUYAR A, ELDEM Y, MERRILL W, et al. A simplified dynamic model of space shuttle main engine[C]∥ 1991 American Control Conference. Piscataway: IEEE Press, 1991. |
47 | DUYAR A, MERRILL W. Fault diagnosis for the Space Shuttle main engine[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(2): 384-389. |
48 | GUO T H, MERRILL W, DUYAR A. A distributed fault-detection and diagnosis system using on-line parameter estimation[J]. IFAC Proceedings Volumes, 1991, 24(5): 221-226. |
49 | DUYAR A, GUO T, MERRILL W, et al. Implementation of a model based fault detection and diagnosis for actuation faults of the Space Shuttle main engine: NASA-TM-105781[R]. Washington, D.C.: NASA, 1992. |
50 | DUYAR A, ELDEM V, MERRILL W, et al. Fault detection and diagnosis in propulsion systems: A fault parameter estimation approach[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(1): 104-108. |
51 | LOZANO-TOVAR P C. Dynamic models for liquid rocket engines with health monitoring application[D]. Cambridge: Massachusetts Institute of Technology, 1998: 17-122. |
52 | HO N T. Failure detection and isolation for the space shuttle main engine[D]. Cambridge: Massachusetts Institute of Technology, 1998: 38-97. |
53 | CHA J, KO S, PARK S Y, et al. Fault detection and diagnosis algorithms for transient state of an open-cycle liquid rocket engine using nonlinear Kalman filter methods[J]. Acta Astronautica, 2019, 163: 147-156. |
54 | RICHARDSON N O, MELCHER K. Analytical redundancy using Kalman filters for rocket engine sensor validation: E-19820[R]. Cleveland: Glenn Research Center, 2020. |
55 | 张育林, 吴建军, 陈启智. 基于模型的推进系统故障检测与诊断[J]. 推进技术, 1994, 15(5): 1-8. |
ZHANG Y L, WU J J, CHEN Q Z. Model-based fault detection and diagnosis for liquid rocket propulsion system[J]. Journal of Propulsion Technology, 1994, 15(5): 1-8 (in Chinese). | |
56 | WU J J, ZHANG Y L, CHEN Q Z, et al. Fault detection and diagnosis based on neural networks for liquid rocket propulsion system: AIAA-1995-2350[R]. Reston: AIAA, 1995. |
57 | WU J J, ZHANG Y L, CHEN Q Z. The joint estimation approach of states and parameters for liquid rocket engine health monitoring[J]. Journal of National University of Defense Technology, 1997, 19(4): 14-20. |
58 | YU D R, WANG J B. Leak fault detection of liquid rocket engine based on strong tracking filter[J]. Journal of Propulsion and Power, 2002, 18(2): 280-283. |
59 | 胡庆雷, 曾杨智, 徐亦奇, 等. 一种基于改进粒子滤波的火箭发动机故障诊断方法: CN202011243993.7 [P]. 2021-10-15. |
HU Q L, ZENG Y Z, XU Y Q, et al. A fault diagnosis method for rocket engine based on improved particle fil-ter: CN202011243993.7[P]. 2021-10-15 (in Chinese). | |
60 | 胡庆雷, 曾杨智, 郑建英, 等. 基于增广粒子滤波的液体火箭发动机推力室故障诊断方法: CN113128570A[P]. 2022-12-20. |
HU Q L, ZENG Y Z, ZHENG J Y, et al. Liquid rocket engine thrust chamber fault diagnosis method based on augmented particle filtering: CN113128570A[P]. 2022-12-20 (in Chinese). | |
61 | NORMAN A M, MARAM J, COLEMAN P, et al. Development of a real-time model based safety monitoring algorithm for the SSME: AIAA-1992-3165[R]. Reston: AIAA, 1992. |
62 | NORMAN A M. Rocketdyne safety algorithm: Space shuttle main engine fault detection: NASA-CR-195356 [R]. Washington, D.C.: NASA, 1994. |
63 | 朱恒伟, 黄卫东, 王克昌, 等. 液体火箭发动机故障诊断的最优回归方法[J]. 国防科技大学学报, 1998, 20(1): 14-17. |
ZHU H W, HUANG W D, WANG K C, et al. An optimal regression approach to fault diagnosis of liquid rocket engin[J]. Journal of National University of Defense Technology, 1998, 20(1): 14-17 (in Chinese). | |
64 | SANTI L, BUTAS J. Generalized data reduction strategy for rocket engine applications: AIAA-2000-3306[R]. Reston: AIAA, 2000. |
65 | BUTAS J, MEYER C, SANTI L, et al. Rocket engine health monitoring using a model-based approach: AIAA-2001-3764[R]. Reston: AIAA, 2001. |
66 | CHA J, HA C, KO S, et al. Application of fault factor method to fault detection and diagnosis for space shuttle main engine[J]. Acta Astronautica, 2016, 126: 517-527. |
67 | LEE K, CHA J, KO S, et al. Fault detection and diagnosis algorithms for an open-cycle liquid propellant rocket engine using the Kalman filter and fault factor methods[J]. Acta Astronautica, 2018, 150: 15-27. |
68 | 刘冰, 张育林. 奇偶空间法用于液体火箭发动机故障诊断[J]. 推进技术, 1999, 20(6): 6-9. |
LIU B, ZHANG Y L. Parity space method for fault diagnosis of liquid rocket engine[J]. Journal of Propulsion Technology, 1999, 20(6): 6-9 (in Chinese). | |
69 | HAWMAN M W, GALINAITIS W S, TULPULE S, et al. Framework for a space shuttle main engine health monitoring system: NASA-CR-185224[R]. Washington, D.C.: NASA, 1990. |
70 | HAWMAN M. Health monitoring system for the SSME-Program overview: AIAA-1990-1987[R]. Reston: AIAA, 1990. |
71 | 吴建军, 张育林, 陈启智, 等. 液体火箭发动机基于时序分析的实时在线故障检测算法[J]. 航空动力学报, 1996, 11(3): 289-293. |
WU J J, ZHANG Y L, CHEN Q Z, et al. A real time on-line fault detection algorithm based on time series analysis for liquid rocket engine[J]. Journal of Aerospace Power, 1996, 11(3): 289-293 (in Chinese). | |
72 | 王建波, 于达仁, 王广雄. 基于K-L信息测度的液体火箭发动机的泄漏故障检测[J]. 航空动力学报, 1999, 14(4): 429-432, 456. |
WANG J B, YU D R, WANG G X. Leak fault detection of liquid rocket engine based on k-l information distance[J]. Journal of Aerospace Power, 1999, 14(4): 429-432, 456 (in Chinese). | |
73 | 曹峰, 崔定军, 张振鹏. 基于时序分析的液体火箭发动机实时故障监测算法[J]. 推进技术, 1996, 17(1): 33-36. |
CAO F, CUI D J, ZHANG Z P. A real-time fault detection algorithimbased on tine series analysis for lre[J]. Journal of Propulsion Technology, 1996, 17(1): 33-36 (in Chinese). | |
74 | 张振鹏. 液体发动机故障检测与诊断中的基础研究问题[J]. 推进技术, 2002, 23(5): 353-359. |
ZHANG Z P. Fundamental study of fault monitoring and diagnostic technology of liquid rocket engine[J]. Journal of Propulsion Technology, 2002, 23(5): 353-359 (in Chinese). | |
75 | 薛薇, 张强, 武小平. 基于ARMA模型的液体火箭发动机实时故障诊断方法研究[J]. 计算机测量与控制, 2019, 27(9): 4-7, 22. |
XUE W, ZHANG Q, WU X P. Based on the ARMA model for the liquid rocket propulsion fault detection[J]. Computer Measurement & Control, 2019, 27(9): 4-7, 22 (in Chinese). | |
76 | ZHAO W L, GUO Y Q, YANG J, et al. Hardware-in-the-loop simulation platform for fault diagnosis of rocket engines[C]∥ 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE). Piscataway: IEEE Press, 2019. |
77 | 邓晨, 薛薇, 郑孟伟, 等. 基于改进ARMA模型的火箭发动机稳态工况过程实时故障诊断方法研究[J]. 计算机测量与控制, 2020, 28(2): 33-38. |
DENG C, XUE W, ZHENG M W, et al. Study on real-time diagnosis method of the main stage working condition of rocket engine based on improved ARMA model[J]. Computer Measurement & Control, 2020, 28(2): 33-38 (in Chinese). | |
78 | 张万旋, 张箭, 薛薇, 等. 基于AR/CGARCH模型的液体火箭发动机自适应阈值故障检测算法[J]. 推进技术, 2023, 44(3): 223-228. |
ZHANG W X, ZHANG J, XUE W, et al. Liquid rocket engine adaptive threshold fault detection algorithm based on AR/compact GARCH models[J]. Journal of Propulsion Technology, 2023, 44(3): 223-228 (in Chinese). | |
79 | 崔定军, 刘国球, 张振鹏. 液体火箭发动机系统故障实时监测算法研究[J]. 推进技术, 1993, 14(6): 1-6. |
CUI D J, LIU G Q, ZHANG Z P. Rela-time system fault detection algorithm for liquid rocket engine[J]. Journal of Propulsion Technology, 1993, 14(6): 1-6 (in Chinese). | |
80 | 高正明, 何彬, 赵娟. 液体火箭发动机点火初期推力参数预测[J]. 导弹与航天运载技术, 2008(1): 46-48. |
GAO Z M, HE B, ZHAO J. Prediction of thrust parameters for a liquid rocket engine in the initial stage after ignition[J]. Missiles and Space Vehicles, 2008(1): 46-48 (in Chinese). | |
81 | TULPULE S, GALINAITIS W. Health monitoring system for the SSME-fault detection algorithms: AIAA-1990-1988[R]. Reston: AIAA, 1990. |
82 | 赵万里, 郭迎清, 杨菁, 等. 液体火箭发动机故障诊断器设计及其HIL验证[J]. 北京航空航天大学学报, 2019, 45(10): 1995-2002. |
ZHAO W L, GUO Y Q, YANG J, et al. Design of liquid rocket engine fault diagnosis device and its HIL verification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1995-2002 (in Chinese). | |
83 | 薛薇, 武小平, 张箭, 等. 基于RESID方法的液体火箭发动机实时故障诊断算法设计及半实物仿真验证[J]. 计算机测量与控制, 2022, 30(9): 17-21. |
XUE W, WU X P, ZHANG J, et al. Design of real time fault diagnosis algorithm for liquid rocket propulsion based on the RESID method[J]. Computer Measurement & Control, 2022, 30(9): 17-21 (in Chinese). | |
84 | 张育林, 吴建军. 液体火箭发动机健康监控技术[M]. 长沙: 国防科技大学出版社, 1998. |
ZHANG Y L, WU J J. Health monitoring technology of liquid rocket engines[M]. Changsha: National University of Defense Technology Press, 1998 (in Chinese). | |
85 | 黄敏超, 张育林, 陈启智. 神经网络在液体火箭发动机故障检测中的应用(Ⅱ)模式识别技术[J]. 推进技术, 1999, 20(2): 1-4. |
HUANG M C, ZHANG Y L, CHEN Q Z. Neural network approach to fault detection of liquid rocket engine (Ⅱ) pattern recognition technology[J]. Journal of Propulsion Technology, 1999, 20(2): 1-4 (in Chinese). | |
86 | 黄敏超, 张育林, 陈启智. 神经网络在液体火箭发动机故障检测中的应用(Ⅰ)非线性辨识技术[J]. 推进技术, 1999, 20(1): 6-10. |
HUANG M C, ZHANG Y L, CHEN Q Z. Neural network approach to fault detection of liquid rocket engine (Ⅰ)nonlinear identification technology[J]. Journal of Propulsion Technology, 1999, 20(1): 6-10 (in Chinese). | |
87 | MEYER C M, MAUL W A. The application of neural networks to the SSME startup transient: AIAA-1991-2530[R]. Reston: AIAA, 1991. |
88 | SARAVANAN N, DUYAR A, GUO T H, et al. Modeling space shuttle main engine using feed-forward neural networks[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(4): 641-648. |
89 | 崔定军, 杨尔辅, 张振鹏, 等. 基于神经网络的火箭发动机动态过程建模[J]. 航空动力学报, 1995, 10(3): 249-252. |
CUI D J, YANG E F, ZHANG Z P, et al. Dynamic process modelling in rocket engine with neural networks[J]. Journal of Aerospace Power, 1995, 10(3): 249-252 (in Chinese). | |
90 | 崔定军, 杨尔辅, 张振鹏, 等. 用相关参数实现参数多步预测的神经网络方法[J]. 航空学报, 1996, 17(3): 310-316. |
CUI D J, YANG E F, ZHANG Z P, et al. Neural networks approach to the multi-steps prediction of multi-parameters with correlative parameters[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(3): 310-316 (in Chinese). | |
91 | 王建波, 于达仁. 基于RBF网络的火箭发动机动态过程建模[J]. 推进技术, 1999, 20(4): 9-12. |
WANG J B, YU D R. Rocket engine dynamic process modeling based on RBFN[J]. Journal of Propulsion Technology, 1999, 20(4): 9-12 (in Chinese). | |
92 | 黄强. 高压补燃液氧煤油发动机故障检测与诊断技术研究[D]. 长沙: 国防科技大学, 2012. |
HUANG Q. Study on the techniques of fault detection and diagnosis for high pressure staged combustion LOX/kerosene rocket engine[D]. Changsha: National University of Defense Technology, 2012 (in Chinese). | |
93 | 李艳军. 新一代大推力液体火箭发动机故障检测与诊断关键技术研究[D]. 长沙: 国防科技大学, 2014. |
LI Y J. Study on key techniques of fault detection and diagnosis for new generation large-scale liquid-propellant rocket engines[D]. Changsha: National University of Defense Technology, 2014 (in Chinese). | |
94 | ZHANG W. Fault prediction methods of liquid rocket engine (LRE)[M]∥Failure characteristics analysis and fault diagnosis for liquid rocket engines. Berlin: Springer, 2016. |
95 | 田路, 张炜, 杨正伟. Elman型神经网络在液体火箭发动机故障预测中的应用[J]. 弹箭与制导学报, 2009, 29(1): 191-194. |
TIAN L, ZHANG W, YANG Z W. Application of Elman neural network on liquid rocket engine fault prediction[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(1): 191-194 (in Chinese). | |
96 | 聂侥. 基于过程神经网络的液体火箭发动机故障预测方法研究[D]. 长沙: 国防科技大学, 2017. |
NIE Y. Investigation on fault prediction methods based on process neural network for liquid-propellant rocket engines[D]. Changsha: National University of Defense Technology, 2017 (in Chinese). | |
97 | 熊靖宇. 液氧甲烷发动机故障特征分析与故障预测方法研究[D]. 长沙: 国防科技大学, 2018. |
XIONG J Y. Investigation on fault feature analysis and fault prediction methods for LOX/methane rocket engines[D]. Changsha: National University of Defense Technology, 2018 (in Chinese). | |
98 | 吴玉洋, 李宁宁, 薛薇, 等. 改进PSO优化LSSVM的液体火箭发动机故障检测[J]. 计算机仿真, 2020, 37(5): 49-54. |
WU Y Y, LI N N, XUE W, et al. Fault diagnosis of liquid-propellant rocket engines base on improved PSO to optimize LSSVM[J]. Computer Simulation, 2020, 37(5): 49-54 (in Chinese). | |
99 | MARU Y, MORI H, OGAI T, et al. Anomaly detection configured as a combination of state observer and mahalanobis-taguchi method for a rocket engine[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2018, 16(2): 195-201. |
100 | WILLIAMS R B, PARLOS A G. Adaptive state filtering for space shuttle main engine turbine health monitoring[J]. Journal of Spacecraft and Rockets, 2003, 40(1): 101-109. |
[1] | Minghui HU, Jinji GAO, Zhinong JIANG, Weimin WANG, Limin ZOU, Tao ZHOU, Yunfeng FAN, Yue WANG, Jiaxin FENG, Chenyang LI. Research progress on vibration monitoring and fault diagnosis for aero-engine [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 630194-630194. |
[2] | Zhanjun HUANG, Xin DONG, Muyu LU, Ruitao ZHANG, Zhaoyang YAN, An ZHANG. Fault diagnosis of inverter of aviation HVDC sysytem based on DRSN and voltage amplitude analysis [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 328685-328685. |
[3] | Tianqing LI, Weimin WANG, Xulong ZHANG, Shuhui WANG, Zhenyu FU. Identification method of rotor blade axial displacement based on blade tip timing [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 228682-228682. |
[4] | Ziguang LI, Peng CHENG, Qinglian LI, Xiao BAI, Pengjin CAO. Influence of backpressure on spray distribution characteristics of a gas-liquid pintle injector element [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128614-128614. |
[5] | Jie LI, Wenxin HUANG, Yiming CAI, Siyuan WANG, Yufei GAO, Xuefeng JIANG. Fault diagnosis and fault tolerant control of position sensor based on DFPMM [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329307-329307. |
[6] | Meng DONG, Yonghua TAN, Chuang HE, Lixiang XING, Ruiguo ZHAO. Hydraulic excitation experiment on frequency characteristic of simulated feed system after pump in a rocket engine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 127419-127419. |
[7] | Le XIANG, Kaifu XU, Hui CHEN, Suibo LI, Kai ZHANG, Shixin LIU. Experimental studies on cavitating flow for liquid rocket engine cryogenic turbopump: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 27131-027131. |
[8] | Baohui JIA, Fan JIANG, Yuxin WANG, Du WANG. Fault diagnosis method based on civil aircraft maintenance text data [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 326598-326598. |
[9] | Jinrui WANG, Shanshan JI, Zongzhen ZHANG, Zhenyun CHU, Baokun HAN, Huaiqian BAO. Parallel sparse filtering for fault diagnosis under bearing acoustic signal [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 426887-426887. |
[10] | Xiaopu ZHANG, Feng REN, Pengli XU, Zhimin LI, Caihong SU. Selection method of measuring parameters for rocket engine based on fault recognition [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 128522-128522. |
[11] | Gongye YU, Weidong CAI, Minghui HU, Wencai LIU, Bo MA. Intelligent migration diagnosis of mechanical faults driven by hybrid fault mechanism and domain adaptation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(2): 426800-426800. |
[12] | Luyi YANG, Hailian ZHANG, Qibo PENG, Haiyang LI, Xinfeng WU. Analytical analysis methods for point return orbit window under different ascending and descending return modes [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528748-528748. |
[13] | Chenghao GUO, Jinsong YU, Yue SONG, Qi YIN, Jiaxuan LI. Application of digital twin⁃based aircraft landing gear health management technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 227629-227629. |
[14] | Fangli WANG, Kai LIU, Wei PAN, Mingbo TONG. Application and development of green structure maintenance for civil aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 25851-025851. |
[15] | Dahua DU, Bin LI. Key structural dynamic design technologies in liquid rocket engines: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 27554-027554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341