1 |
LIAO W L, YANG D C, WANG Y S, et al. Fault diagnosis of power transformers using graph convolutional network[J]. CSEE Journal of Power and Energy Systems, 2021, 7(2): 241-249.
|
2 |
ZHANG D C, STEWART E, ENTEZAMI M, et al. Intelligent acoustic-based fault diagnosis of roller bearings using a deep graph convolutional network[J]. Measurement, 2020, 156: 107585.
|
3 |
WANG T, LIU Z, LU G L, et al. Temporal-spatio graph based spectrum analysis for bearing fault detection and diagnosis[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2598-2607.
|
4 |
ZHOU K B, YANG C Y, LIU J, et al. Dynamic graph-based feature learning with few edges considering noisy samples for rotating machinery fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2022, 69(10): 10595-10604.
|
5 |
XU J M, KE H B, CHEN Z W, et al. Oversmoothing relief graph convolutional network-based fault diagnosis method with application to the rectifier of high-speed trains[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 771-779.
|
6 |
CHEN Z W, XU J M, PENG T, et al. Graph convolutional network-based method for fault diagnosis using a hybrid of measurement and prior knowledge[J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9157-9169.
|
7 |
YANG C Y, ZHOU K B, LIU J. SuperGraph: Spatial-temporal graph-based feature extraction for rotating machinery diagnosis[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 4167-4176.
|
8 |
LI T F, ZHOU Z, LI S N, et al. The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study[J]. Mechanical Systems and Signal Processing, 2022, 168: 108653.
|
9 |
KONEČNÝ J, MCMAHAN H B, YU F X, et al. Federated learning: Strategies for improving communication efficiency[EB/OL]. 2016: arXiv: 1610.05492.
|
10 |
邵海东, 肖一鸣, 闵志闪, 等. 区块链和边缘计算赋能的联邦学习故障诊断框架[J]. 机械工程学报,2023,59(21):283-292.
|
|
SHAO H D, XIAO Y M, MIN Z S,et al. Blockchain and edge computing enabled federated learning fault diagnosis framework[J]. Journal of Mechanical Engineering,2023,59(21):283-292 (in Chinese).
|
11 |
ZHANG W, LI X, MA H, et al. Federated learning for machinery fault diagnosis with dynamic validation and self-supervision[J]. Knowledge-Based Systems, 2021, 213: 106679.
|
12 |
ZHANG W, LI X. Data privacy preserving federated transfer learning in machinery fault diagnostics using prior distributions[J]. Structural Health Monitoring, 2022, 21(4): 1329-1344.
|
13 |
ZHANG W, LI X. Federated transfer learning for intelligent fault diagnostics using deep adversarial networks with data privacy[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(1): 430-439.
|
14 |
SUN S L, HUANG H D, PENG T Y, et al. A data privacy protection diagnosis framework for multiple machines vibration signals based on a swarm learning algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3501309.
|
15 |
ZHANG W, WANG Z W, LI X. Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis[J]. Reliability Engineering & System Safety, 2023, 229: 108885.
|
16 |
CHEN J, TANG J H, LI W H. Industrial edge intelligence: Federated-meta learning framework for few-shot fault diagnosis[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(6): 3561-3573.
|
17 |
DU N H, LONG N H, HA K N, et al. Trans-Lighter: A light-weight federated learning-based architecture for remaining useful lifetime prediction[J]. Computers in Industry, 2023, 148: 103888.
|
18 |
ANGLES R, GUTIERREZ C. Survey of graph database models[J]. ACM Computing Surveys, 2008, 40(1): 1-39.
|
19 |
ZUMSTEIN P. Comparison of spectral methods through the adjacency matrix and the Laplacian of a graph[D]. Zurich: ETH Zürich, 2005.
|
20 |
XIE Z L, CHEN J L, FENG Y, et al. Semi-supervised multi-scale attention-aware graph convolution network for intelligent fault diagnosis of machine under extremely-limited labeled samples[J]. Journal of Manufacturing Systems, 2022, 64: 561-577.
|
21 |
YANG C Y, LIU J, ZHOU K B, et al. A node-level PathGraph-based bearing remaining useful life prediction method[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3517610.
|
22 |
LI C Y, MO L F, YAN R Q. Rolling bearing fault diagnosis based on horizontal visibility graph and graph neural networks[C]∥ 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD). Piscataway: IEEE Press, 2020: 275-279.
|
23 |
DYER R J, NASON J D. Population graphs: The graph theoretic shape of genetic structure[J]. Molecular Ecology, 2004, 13(7): 1713-1727.
|
24 |
贾思祥, 孙丁一, 毛刚, 等. 基于对抗熵的转子系统跨工况故障诊断方法[J]. 机械工程学报, 2023, 59(15): 110-120.
|
|
JIA S X, SUN D Y, MAO G, et al. Adversarial entropy based fault diagnosis method for rotor system across different working conditions[J]. Journal of Mechanical Engineering, 2023, 59(15): 110-120 (in Chinese).
|