Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (20): 428507-428507.doi: 10.7527/S1000-6893.2023.28507
• Material Engineering and Mechanical Manufacturing • Previous Articles Next Articles
Yankuan LIU1,2, Hang YUAN1,2, Dinghe LI3(), Yujie FEI1,2
Received:
2023-02-01
Revised:
2023-02-06
Accepted:
2023-05-12
Online:
2023-10-25
Published:
2023-05-26
Contact:
Dinghe LI
E-mail:dh-li@cauc.edu.cn
Supported by:
CLC Number:
Yankuan LIU, Hang YUAN, Dinghe LI, Yujie FEI. Effect of thermal aging on mechanical properties of thermal barrier coatings interface and numerical calculation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 428507-428507.
1 | ZHANG D H, CHENG Y Y, JIANG R S, et al. Turbine blade investment casting die technology[M]. Heidelberg: Springer Berlin Heidelberg, 2018. |
2 | YU Z Q, LIU J J, LI C, et al. Experimental investigation of film cooling performance on blade endwall with diffusion slot holes and stator-rotor purge flow[C]∥ Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Montreal: ASME, 2020: 1-28. |
3 | LI H W, ZHANG D W, HAN F, et al. Experimental investigation on the effect of hole diameter on the leading edge region film cooling of a twist turbine blade under rotation conditions[J]. Applied Thermal Engineering, 2021, 184: 116386. |
4 | WANG F Q, PU J, WANG J H, et al. Numerical investigation of effects of blockage, inclination angle, and hole-size on film cooling effectiveness at concave surface[J]. Journal of Turbomachinery, 2021, 143(2): 021007. |
5 | ZHU R, ZHANG G H, LI S L, et al. Combined-hole film cooling designs based on the construction of antikidney vortex structure: A review[J]. Journal of Heat Transfer, 2021, 143(3): 030801. |
6 | JIANG J S, JIANG L X, CAI Z W, et al. Numerical stress analysis of the TBC-film cooling system under operating conditions considering the effects of thermal gradient and TGO growth[J]. Surface and Coatings Technology, 2019, 357: 433-444. |
7 | YUGESWARAN S, AMARNATH P, ANANTHAPA DMANABHAN P V, et al. Thermal conductivity and oxidation behavior of porous Inconel 625 coating interface prepared by dual-injection plasma spraying[J]. Surface and Coatings Technology, 2021, 411: 126990. |
8 | CHEN W R, WU X, MARPLE B R, et al. The growth and influence of thermally grown oxide in a thermal barrier coating[J]. Surface and Coatings Technology, 2006, 201(3/4): 1074-1079. |
9 | WANG L, LI Z D, DING K Y, et al. Effects of TGO growth on the stress distribution and evolution of three-dimensional cylindrical thermal barrier coatings based on finite element simulations[J]. Ceramics International, 2022, 48(6): 7864-7875. |
10 | MARTENA M, BOTTO D, FINO P, et al. Modelling of TBC system failure: Stress distribution as a function of TGO thickness and thermal expansion mismatch[J]. Engineering Failure Analysis, 2006, 13(3): 409-426. |
11 | 刘亚男, 张立同, 梅辉, 等. 等离子喷涂热障涂层高温风洞热震行为[J]. 稀有金属材料与工程, 2009, 38(1):176-179. |
LIU Y N, ZHANG L T, MEI H, et al. Thermal shock behavior of air plasma sprayed thermal barrier coatings under high temperature wind tunnel[J]. Rare Metal Materials and Engineering, 2009, 38(1): 176-179 (in Chinese). | |
12 | TORKASHVAND K, POURSAEIDI E, MOHAMMADI M. Effect of TGO thickness on the thermal barrier coatings life under thermal shock and thermal cycle loading[J]. Ceramics International, 2018, 44(8): 9283-9293. |
13 | KARLSSON A M, EVANS A G. A numerical model for the cyclic instability of thermally grown oxides in thermal barrier systems[J]. Acta Materialia, 2001, 49(10): 1793-1804. |
14 | CHICOT D, DÉMARÉCAUX P, LESAGE J. Apparent interface toughness of substrate and coating couples from indentation tests[J]. Thin Solid Films, 1996, 283(1/2): 151-157. |
15 | BENJEDDOU A, ANDRIANARISON O. A heat mixed variational theorem for thermoelastic multilayered composites[J]. Computers and Structures, 2006, 84(19-20): 1247-1255. |
16 | 李顶河, 麻硕. 含损伤热障涂层结构热力耦合问题的扩展逐层/实体元方法研究[J]. 航空科学技术, 2021, 32(9): 12-24. |
LI D H, MA S. Study on thermomechanical extended-layewise/solid-elements method for thermomechanical problems of thermal barrier coatings structure with damage[J]. Aeronautical Science and Technology, 2021, 32(9): 12-24 (in Chinese). | |
17 | LI D H, FISH J. Thermomechanical Extended Layerwise Method for laminated composite plates with multiple delaminations and transverse cracks[J]. Composite Structures, 2018, 185: 665-683. |
18 | LI D H, ZHANG F. Full extended layerwise method for the simulation of laminated composite plates and shells[J]. Computers and Structures, 2017, 187: 101-113. |
19 | LI D H, ZHANG X, SZE K Y, et al. Extended layerwise method for laminated composite plates with multiple delaminations and transverse cracks[J].Computational Mechanics, 2016, 58(4): 657-679. |
20 | LI D H, ZHANG F, XU J X. Incompatible extended layerwise method for laminated composite shells[J]. International Journal of Mechanical Sciences, 2016, 119: 243-252. |
21 | LI D H. Delamination and transverse crack growth prediction for laminated composite plates and shells[J]. Computers and Structures, 2016, 177: 39-55. |
22 | LI D H, LIU Y, ZHANG X. An extended Layerwise method for composite laminated beams with multiple delaminations and matrix cracks[J]. International Journal for Numerical Methods in Engineering, 2015, 101(6): 407-434. |
23 | LEVIT M, GRIMBERG I, WEISS B Z. Residual stresses in ceramic plasma-sprayed thermal barrier coatings: Measurement and calculation[J]. Materials Science and Engineering: A, 1996, 206(1): 30-38. |
24 | SCARDI P, LEONI M, BERTAMINI L. Residual stresses in plasma sprayed partially stabilised zirconia TBCs: Influence of the deposition temperature[J]. Thin Solid Films, 1996, 278(1-2): 96-103. |
25 | CHEN W L, LIU M, ZHANG J F, et al. High-temperature oxidation behavior and analysis of impedance spectroscopy of 7YSZ thermal barrier coating prepared by plasma spray-physical vapor deposition[J]. Chinese Journal of Aeronautics, 2018, 31(8): 1764-1773. |
26 | AHMADIAN S, JORDAN E H. Explanation of the effect of rapid cycling on oxidation, rumpling, microcracking and lifetime of air plasma sprayed thermal barrier coatings[J]. Surface and Coatings Technology, 2014, 244: 109-116. |
27 | 李定骏, 杨镠育, 孙帆, 等. 面向航空发动机与燃气轮机先进热障涂层制备: 预热温度对热障涂层表面裂纹形成的影响[J]. 航空学报, 2022, 43(6): 516184. |
LI D J, YANG L Y, SUN F, et al. Effect of preheating temperature on formation of surface cracks in thermal barrier coating system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 516184 (in Chinese). | |
28 | BÄKER M, RÖSLER J, HEINZE G. A parametric study of the stress state of thermal barrier coatings Part II: Cooling stresses[J]. Acta Materialia, 2005, 53(2): 469-476. |
29 | LIU Y K, COPIN E, DULUARD S, et al. Apparent interfacial toughness of undoped and photoluminescent Eu3+-doped yttria-stabilized zirconia thermal barrier coatings[J]. Journal of Thermal Spray Technology, 2020, 29(3): 433-443. |
30 | LIU Y Z, ZHENG S J, ZHU Y L, et al. Microstructural evolution at interfaces of thermal barrier coatings during isothermal oxidation[J]. Journal of the European Ceramic Society, 2016, 36(7): 1765-1774. |
31 | LIU X J, WANG T, LI C C, et al. Microstructural evolution and growth kinetics of thermally grown oxides in plasma sprayed thermal barrier coatings[J]. Progress in Natural Science: Materials International, 2016, 26(1): 103-111. |
32 | LI G R, YANG G J, LI C X, et al. Sintering characteristics of plasma-sprayed TBCs: Experimental analysis and an overall modelling[J]. Ceramics International, 2018, 44(3): 2982-2990. |
33 | 刘延宽, 许婧, 李尧, 等. Eu3+掺杂对YSZ热障涂层隔热性能与涂层界面断裂韧性的影响研究[J]. 稀有金属材料与工程, 2021, 50(5): 1699-1705. |
LIU Y K, XU J, LI Y. Effect of Eu3+ doping on thermal insulation property and interfacial fracture toughness of YSZ thermal barrier coatings[J]. Rare Metal Materials And Engineering, 2021, 50(5): 1699-1705 (in Chinese). | |
34 | WANG K, PENG H, GUO H B, et al. Effect of sintering on thermal conductivity and thermal barrier effects of thermal barrier coatings[J]. Chinese Journal of Aeronautics, 2012, 25(5): 811-816. |
35 | LIU Y K, LIU Y H, LOURS P, et al. Influence of isothermal aging conditions on APS TBC’s interfacial fracture toughness[J]. Surface and Coatings Technology, 2017, 313: 417-424. |
36 | SHEN W, WANG F C, FAN Q B, et al. Lifetime prediction of plasma-sprayed thermal barrier coating systems[J]. Surface and Coatings Technology, 2013, 217: 39-45. |
37 | 郑允宅, 朱建峰, 曹萍丽, 等. 等离子喷涂热障涂层中应力分布的有限元模拟[J]. 机械工程材料, 2015, 39(9):84-88. |
ZHENG Y Z, ZHU J F, CAO P L, et al. Finite element simulation of stress distribution in plasma sprayed thermal barrier coating[J]. Materials for Mechanical Engineering, 2015, 39(9):84-88 (in Chinese). | |
38 | YU Q M, CEN L. Residual stress distribution along interfaces in thermal barrier coating system under thermal cycles[J]. Ceramics International, 2017, 43(3): 3089-3100. |
[1] | XIA Kailong, HE Qing, ZHANG Yusheng. Measurement method of turbine blade film aperture based on infrared thermal imaging and shrinkage law [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 426271-426271. |
[2] | YANG Shanjie, YAN Xudong, GUO Hongbo. Failure mechanism and protection strategy of thermal barrier coatings under CMAS attack [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527613-527613. |
[3] | GUO Wei, DONG Lihong, WANG Huipeng, XU Binshi. Research progress of damage estimation for turbine blades based on infrared thermographic technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(2): 429-436. |
[4] | GUO Hongbo, GONG Shengkai, XU Huibin. Research Progress on New High/ultra-high Temperature Thermal Barrier Coatings and Processing Technologies [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(10): 2722-2732. |
[5] | HAO Weiwei, ZHENG Lei, GUO Hongbo, GONG Shengkai, XU Huibin. Microstructure and Thermo-physical Properties of Plasma Sprayed LaTi2Al9O19 Thermal Barrier Coatings [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(6): 1485-1492. |
[6] | ZHAO Naiyi, PENG Hui, GUO Hongbo, GONG Shengkai. Influence of Substrate Curvature on the Bonding Strength of TBCs via Non-destructive Testing Research [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, (6): 1125-1133. |
[7] | HAN Zhiyong, ZHANG Hua, WANG Zhiping. Study of Residual Stress of Thermal Barrier Coatings by Raman Spectroscopy and Numerical Analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(2): 369-374. |
[8] | Guo Xingwang;Ding Mengmeng. Simulation of Thermal NDT of Thickness and Its Unevenness of Thermal Barrier Coatings [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(1): 198-203. |
[9] | ZHANG Chun-xia;GONG Sheng-kai;XU Hui-bin. Failure Evaluation of Thermal Barrier Coatings by Impedance Spectroscopy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(3): 520-524. |
[10] | XIANG Min;LUO Jun-hua;ZHANG Qi. Influence of Salt Spray Corrosion on High-Temperature Cyclic Oxidation Behavior of Thermal Barrier Coatings [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(1): 138-141. |
[11] | LIU Fu-shun;XU Hui-bin;GONG Sheng-kai;SUN Xi-jun;WANG Jian;BA Rui-zhang. Investigation on Effect of EB-PVD Thermal Barrier Coatings on Diameters of Gaseous Envelope Cool and Thermal Circles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2003, 24(2): 178-182. |
[12] | GUO Hong-bo;GONG Sheng-kai;XU Hui-bin. DESIGN OF GRADIENT THERMAL BARRIER COATINGS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2002, 23(5): 467-472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341