ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (10): 527613-527613.doi: 10.7527/S1000-6893.2022.27613
• Material Engineering and Mechanical Manufacturing • Previous Articles Next Articles
YANG Shanjie1,2, YAN Xudong1,3, GUO Hongbo1,3
Received:
2022-06-13
Revised:
2022-06-28
Published:
2022-07-25
Supported by:
CLC Number:
YANG Shanjie, YAN Xudong, GUO Hongbo. Failure mechanism and protection strategy of thermal barrier coatings under CMAS attack[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527613-527613.
[1] 刘大响, 金捷. 21世纪世界航空动力技术发展趋势与展望[J]. 中国工程科学, 2004, 6(9):1-8. LIU D X, JIN J. The development trends and prospect of world aeropropulsion technology in the 21st century[J]. Engineering Science, 2004, 6(9):1-8 (in Chinese). [2] SEHRA A K, WHITLOW W JR. Propulsion and power for 21st century aviation[J]. Progress in Aerospace Sciences, 2004, 40(4-5):199-235. [3] National Research Council. A review of United States Air Force and Department of Defense aerospace propulsion needs[M]. Washington, D.C.:The National Academies Press, 2006. [4] PEREPEZKO J H. The hotter the engine, the better[J]. Science, 2009, 326(5956):1068-1069. [5] 孙明霞, 梁春华. 美国自适应发动机研究的进展与启示[J]. 航空发动机, 2017, 43(1):95-102. SUN M X, LIANG C H. Progress and revelation of US adaptive cycle engine development[J]. Aeroengine, 2017, 43(1):95-102 (in Chinese). [6] PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566):280-284. [7] 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(S2):18-26. GUO H B, GONG S K, XU H B. Progress in thermal barrier coatings for advanced aeroengines[J]. Materials China, 2009, 28(S2):18-26 (in Chinese). [8] DAROLIA R. Thermal barrier coatings technology:Critical review, progress update, remaining challenges and prospects[J]. International Materials Reviews, 2013, 58(6):315-348. [9] 徐惠彬, 宫声凯, 刘福顺. 航空发动机热障涂层材料体系的研究[J]. 航空学报, 2000, 21(1):7-12. XU H B, GONG S K, LIU F S. Recent development in materials design of thermal barrier coatings for gas turbine[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1):7-12 (in Chinese). [10] MAZZOCCHI M, HANSSTEIN F, RAGONA M. The 2010 volcanic ash cloud and its financial impact on the European airline industry[J]. CESifo Forum, 2010, 11(2):92-100. [11] PRATA A J, TUPPER A. Aviation hazards from volcanoes:The state of the science[J]. Natural Hazards, 2009, 51(2):239-244. [12] BAINES P G, SPARKS R S J. Dynamics of giant volcanic ash clouds from supervolcanic eruptions[J]. Geophysical Research Letters, 2005, 32(24):L24808. [13] POERSCHKE D L, JACKSON R W, LEVI C G. Silicate deposit degradation of engineered coatings in gas turbines:Progress toward models and materials solutions[J]. Annual Review of Materials Research, 2017, 47:297-330. [14] LECHNER P, TUPPER A, GUFFANTI M, et al. Volcanic ash and aviation-The challenges of real-time, global communication of a natural hazard[M]//Advances in Volcanology. Cham:Springer International Publishing, 2017:51-64. [15] PRATA F, ROSE B. Volcanic ash hazards to aviation[M]//The Encyclopedia of Volcanoes. Amsterdam:Elsevier, 2015:911-934. [16] GUFFANTI M, MAYBERRY G C, CASADEVALL T J, et al. Volcanic hazards to airports[J]. Natural Hazards, 2009, 51(2):287-302. [17] SMIALEK J L, ARCHER F A, GARLICK R G. Turbine airfoil degradation in the Persian Gulf war[J]. JOM, 1994, 46(12):39-41. [18] DUNN M G, PADOVA C, MOLLER J E, et al. Performance deterioration of a turbofan and a turbojet engine upon exposure to a dust environment[J]. Journal of Engineering for Gas Turbines and Power, 1987, 109(3):336-343. [19] CARDWELL N D, THOLE K A, BURD S W. Investigation of sand blocking within impingement and film-cooling holes[J]. Journal of Turbomachinery, 2010, 132(2):021020. [20] GUFFANTI M, CASADEVALL T, BUDDING K. Encounters of aircraft with volcanic ash clouds:A compilation of known incidents, 1953-2009:545[R]. Reston:US Geological Survey, 2010. [21] MONTERO X, NARAPARAJU R, GALETZ M C, et al. Study of CMAS infiltration and evaporation behaviour under water vapour/sulphur oxide conditions in EB-PVD 7YSZ[J]. Corrosion Science, 2022, 198:110123. [22] Smithsonian Institution. Volcanoes of the world (VOTW) database information[DB/OL]. (2022-06-08)[2022-06-13]. https://doi.org/10.5479/si.GVP.VOTW4-2013. [23] CARR J L, HORVÁTH Á, WU D L, et al. Stereo plume height and motion retrievals for the record-setting Hunga Tonga-Hunga Ha'apai eruption of 15 January 2022[J]. Geophysical Research Letters, 2022, 49(9):2022GL098131. [24] MILLÁN L, SANTEE M L, LAMBERT A, et al. The hunga Tonga-Hunga Ha'apai hydration of the stratosphere[J]. Geophysical Research Letters, 2022, 49(13):e2022GL099381. [25] Amaerica Civil Aviation Authority. Guidance regarding flight operations in the vicinity of volcanic ash[M]. West Sussex:Aviation House, 2017:CAP1236. [26] CLARKSON R J, MAJEWICZ E J, MACK P. A re-evaluation of the 2010 quantitative understanding of the effects volcanic ash has on gas turbine engines[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2016, 230(12):2274-2291. [27] KUMAR R, ROMMEL S, JIANG C, et al. Effect of CMAS viscosity on the infiltration depth in thermal barrier coatings of different microstructures[J]. Surface and Coatings Technology, 2022, 432:128039. [28] CASADEVALL T. Volcanic ash and aviation safety:Proceedings of the first international symposium on volcanic ash and aviation safety:2047[R]. Reston:US Geological Survey, 1994. [29] SIGURDSSON H H B, SIGURDSSON H, HOUGHTON B F, et al. The encyclopedia of volcanoes[M]. Amsterdam:Academic Press, 2015. [30] WOODS A W, WOHLETZ K. Dimensions and dynamics of co-ignimbrite eruption columns[J]. Nature, 1991, 350(6315):225-227. [31] SELF S. The effects and consequences of very large explosive volcanic eruptions[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2006, 364(1845):2073-2097. [32] MASTIN L G, GUFFANTI M, SERVRANCKX R, et al. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions[J]. Journal of Volcanology and Geothermal Research, 2009, 186(1-2):10-21. [33] ROSE W I, DURANT A J. Fine ash content of explosive eruptions[J]. Journal of Volcanology and Geothermal Research, 2009, 186(1-2):32-39. [34] DEAN J, TALTAVULL C, CLYNE T W. Influence of the composition and viscosity of volcanic ashes on their adhesion within gas turbine aeroengines[J]. Acta Materialia, 2016, 109:8-16. [35] KRAUSE A R, GARCES H F, DWIVEDI G, et al. Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings[J]. Acta Materialia, 2016, 105:355-366. [36] GRANT K M, KRÄMER S, SEWARD G G E, et al. Calcium-magnesium alumino-silicate interaction with yttrium monosilicate environmental barrier coatings[J]. Journal of the American Ceramic Society, 2010, 93(10):3504-3511. [37] CLARKE D R, OECHSNER M, PADTURE N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bulletin, 2012, 37(10):891-898. [38] PENG H, WANG L, GUO L, et al. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits[J]. Progress in Natural Science:Materials International, 2012, 22(5):461-467. [39] LEVI C G, HUTCHINSON J W, VIDAL-SÉTIF M H, et al. Environmental degradation of thermal-barrier coatings by molten deposits[J]. MRS Bulletin, 2012, 37(10):932-941. [40] WU J, GUO H B, GAO Y Z, et al. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits[J]. Journal of the European Ceramic Society, 2011, 31(10):1881-1888. [41] NARAPARAJU R, HVTTERMANN M, SCHULZ U, et al. Tailoring the EB-PVD columnar microstructure to mitigate the infiltration of CMAS in 7YSZ thermal barrier coatings[J]. Journal of the European Ceramic Society, 2017, 37(1):261-270. [42] NGUNJOH L N, LI L, ANN B, et al CMAS-resistant barrier coatings:US2019/0048475A1[P]. 2019-02-14. [43] SELF S. The effects and consequences of very large explosive volcanic eruptions[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364(1845):2073-2097. [44] AYGUN A, VASILIEV A L, PADTURE N P, et al. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits[J]. Acta Materialia, 2007, 55(20):6734-6745. [45] KRÄMER S, YANG J, LEVI C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits[J]. Journal of the American Ceramic Society, 2006, 89(10):3167-3175. [46] BOROM M P, JOHNSON C A, PELUSO L A. Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings[J]. Surface and Coatings Technology, 1996, 86-87:116-126. [47] SONG W J, LAVALLÉE Y, HESS K U, et al. Volcanic ash melting under conditions relevant to ash turbine interactions[J]. Nature Communications, 2016, 7:10795. [48] YANG S J, SONG W J, DINGWELL D B, et al. Surface roughness affects metastable non-wetting behavior of silicate melts on thermal barrier coatings[J]. Rare Metals, 2022, 41(2):469-481. [49] KUEPPERS U, CIMARELLI C, HESS K U, et al. The thermal stability of Eyjafjallajökull ash versus turbine ingestion test sands[J]. Journal of Applied Volcanology, 2014, 3(1):4. [50] KIM J, DUNN M G, BARAN A J, et al. Deposition of volcanic materials in the hot sections of two gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power, 1993, 115(3):641-651. [51] MECHNICH P, BRAUE W, SCHULZ U. High-temperature corrosion of EB-PVD yttria partially stabilized zirconia thermal barrier coatings with an artificial volcanic ash overlay[J]. Journal of the American Ceramic Society, 2011, 94(3):925-931. [52] GIORDANO D, RUSSELL J K, DINGWELL D B. Viscosity of magmatic liquids:A model[J]. Earth and Planetary Science Letters, 2008, 271(1-4):123-134. [53] SONG W J, TANG L H, ZHU X D, et al. Flow properties and rheology of slag from coal gasification[J]. Fuel, 2010, 89(7):1709-1715. [54] SONG W J, TANG L H, ZHU X D, et al. Fusibility and flow properties of coal ash and slag[J]. Fuel, 2009, 88(2):297-304. [55] SONG W J, HESS K U, DAMBY D E, et al. Fusion characteristics of volcanic ash relevant to aviation hazards[J]. Geophysical Research Letters, 2014, 41(7):2326-2333. [56] MVLLER D, KUEPPERS U, HESS K U, et al. Mineralogical and thermal characterization of a volcanic ash:Implications for turbine interaction[J]. Journal of Volcanology and Geothermal Research, 2019, 377:43-52. [57] Deutsches Institut fur Normung. Testing of solid fuels-Determination of ash fusibility:DIN 51730[S]. Berlin:Deutsches Institut fur Normung, 2022. [58] YANG S J, SONG W J, LAVALLEE Y, et al. Dynamic spreading of re-melted volcanic ash bead on thermal barrier coatings[J]. Corrosion Science, 2020, 170:108659. [59] CHEN W R, ZHAO L R. Review-Volcanic ash and its influence on aircraft engine components[J]. Procedia Engineering, 2015, 99:795-803. [60] BONN D, EGGERS J, INDEKEU J, et al. Wetting and spreading[J]. Reviews of Modern Physics, 2009, 81(2):739-805. [61] DUNN M G, BARAN A J, MIATECH J. Operation of gas turbine engines in volcanic ash clouds[J]. Journal of Engineering for Gas Turbines and Power, 1996, 118(4):724-731. [62] ZHAO H B, LEVI C G, WADLEY H N G. Molten silicate interactions with thermal barrier coatings[J]. Surface and Coatings Technology, 2014, 251:74-86. [63] GIORDANO D, NICHOLS A R L, DINGWELL D B. Glass transition temperatures of natural hydrous melts:A relationship with shear viscosity and implications for the welding process[J]. Journal of Volcanology and Geothermal Research, 2005, 142(1-2):105-118. [64] SHAN X, LUO L R, CHEN W F, et al. Pore filling behavior of YSZ under CMAS attack:Implications for designing corrosion-resistant thermal barrier coatings[J]. Journal of the American Ceramic Society, 2018, 101(12):5756-5770. [65] GILDERSLEEVE E, VISWANATHAN V, SAMPATH S. Molten silicate interactions with plasma sprayed thermal barrier coatings:Role of materials and microstructure[J]. Journal of the European Ceramic Society, 2019, 39(6):2122-2131. [66] LI B T, CHEN Z, ZHENG H Z, et al. Wetting mechanism of CMAS melt on YSZ surface at high temperature:First-principles calculation[J]. Applied Surface Science, 2019, 483:811-818. [67] CHEN Z, ZHENG H Z, LI G F, et al. Mechanism of crack nucleation and growth in YSZ thermal barrier coatings corroded by CMAS at high temperatures:First-principles calculation[J]. Corrosion Science, 2018, 142:258-265. [68] XIA J, YANG L, WU R T, et al. Degradation mechanisms of air plasma sprayed free-standing yttria-stabilized zirconia thermal barrier coatings exposed to volcanic ash[J]. Applied Surface Science, 2019, 481:860-871. [69] KAKUDA T R, LEVI C G, BENNETT T D. The thermal behavior of CMAS-infiltrated thermal barrier coatings[J]. Surface and Coatings Technology, 2015, 272:350-356. [70] WELLMAN R G, NICHOLLS J R. Erosion, corrosion and erosion-corrosion of EB PVD thermal barrier coatings[J]. Tribology International, 2008, 41(7):657-662. [71] WELLMAN R, WHITMAN G, NICHOLLS J R. CMAS corrosion of EB PVD TBCs:Identifying the minimum level to initiate damage[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(1):124-132. [72] HARDER B J, RAMÌREZ-RICO J, ALMER J D, et al. Chemical and mechanical consequences of environmental barrier coating exposure to calcium-magnesium-aluminosilicate[J]. Journal of the American Ceramic Society, 2011, 94(S):178-185. [73] CHEN X. Calcium-magnesium-alumina-silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings[J]. Surface and Coatings Technology, 2006, 200(11):3418-3427. [74] LI G Z, CAI C Y, WANG Y G, et al. Zirconium silicate growth induced by the thermochemical interaction of yttria-stablized zirconia coatings with molten CMAS deposits[J]. Corrosion Science, 2019, 149:249-256. [75] QU W W, LI S S, CHEN Z H, et al. Hot corrosion behavior and wettability of calcium-magnesium-alumina-silicate (CMAS) on LaTi2Al9O19 ceramic[J]. Corrosion Science, 2020, 162:108199. [76] 亢永霞, 白宇, 刘琨, 等. 热障涂层的CMAS腐蚀失效及对策研究[J]. 稀有金属材料与工程, 2017, 46(1):282-288. KANG Y X, BAI Y, LIU K, et al. Corrosion failure mechanism of thermal barrier coatings after infiltration of CMAS deposits and countermeasure study[J]. Rare Metal Materials and Engineering, 2017, 46(1):282-288 (in Chinese). [77] 何箐, 汪瑞军, 邹晗, 等. 不同结构8YSZ热障涂层对CMAS沉积物的防护作用[J]. 中国表面工程, 2016, 29(4):86-95. HE Q, WANG R J, ZOU H, et al. Protective effects of 8YSZ TBCs with different microstructures against CMAS deposits[J]. China Surface Engineering, 2016, 29(4):86-95 (in Chinese). [78] PUJOL G, ANSART F, BONINO J P, et al. Step-by-step investigation of degradation mechanisms induced by CMAS attack on YSZ materials for TBC applications[J]. Surface and Coatings Technology, 2013, 237:71-78. [79] FERGUS J W. Zirconia and pyrochlore oxides for thermal barrier coatings in gas turbine engines[J]. Metallurgical and Materials Transactions E, 2014, 1(2):118-131. [80] KRÄMER S, FAULHABER S, CHAMBERS M, et al. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration[J]. Materials Science and Engineering:A, 2008, 490(1-2):26-35. [81] MECHNICH P, BRAUE W. Solid-state CMAS corrosion of an EB-PVD YSZ coated turbine blade:Zr4+ partitioning and phase evolution[J]. Journal of the American Ceramic Society, 2015, 98(1):296-302. [82] BOHORQUEZ E, SARLEY B, HERNANDEZ J, et al. Investigation of the effects of CMAS-infiltration in EB-PVD 7% yttria-stabilized zirconia via Raman spectroscopy[C]//2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2018:0096. [83] VIDAL-SÉTIF M H, RIO C, BOIVIN D, et al. Microstructural characterization of the interaction between 8YPSZ (EB-PVD) thermal barrier coatings and a synthetic CAS[J]. Surface and Coatings Technology, 2014, 239:41-48. [84] LI L, HITCHMAN N, KNAPP J. Failure of thermal barrier coatings subjected to CMAS attack[J]. Journal of Thermal Spray Technology, 2010, 19(1):148-155. [85] VIDAL-SETIF M H, CHELLAH N, RIO C, et al. Calcium-magnesium-alumino-silicate (CMAS) degradation of EB-PVD thermal barrier coatings:Characterization of CMAS damage on ex-service high pressure blade TBCs[J]. Surface and Coatings Technology, 2012, 208:39-45. [86] 王允良, 邓畅光, 詹肇麟, 等. CMAS环境下PS-PVD 7YSZ涂层的抗热冲击性能及失效机制[J]. 金属热处理, 2017, 42(4):175-179. WANG Y L, DENG C G, ZHAN Z L, et al. Thermal shock resistance and failure mechanism of CMAS deposited PS-PVD 7YSZ coating[J]. Heat Treatment of Metals, 2017, 42(4):175-179 (in Chinese). [87] ZHANG X F, ZHOU K S, LIU M, et al. Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating[J]. Ceramics International, 2016, 42(16):19349-19356. [88] YAN Z, GUO L, LI Z H, et al. Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings[J]. Corrosion Science, 2019, 157:450-461. [89] FAN W, BAI Y, LIU Y F, et al. Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack[J]. Ceramics International, 2019, 45(12):15763-15767. [90] 杨姗洁, 彭徽, 郭洪波. 热障涂层在CMAS环境下的失效与防护[J]. 航空材料学报, 2018, 38(2):43-51. YANG S J, PENG H, GUO H B. Failure and protection of thermal barrier coating under CMAS attack[J]. Journal of Aeronautical Materials, 2018, 38(2):43-51 (in Chinese). [91] 张小锋, 周克崧, 宋进兵, 等. 等离子喷涂-物理气相沉积7YSZ热障涂层沉积机理及其CMAS腐蚀失效机制[J]. 无机材料学报, 2015, 30(3):287-293. ZHANG X F, ZHOU K S, SONG J B, et al. Deposition and CMAS corrosion mechanism of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition[J]. Journal of Inorganic Materials, 2015, 30(3):287-293 (in Chinese). [92] ZHANG B P, SONG W J, GUO H B. Wetting, infiltration and interaction behavior of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor[J]. Journal of the European Ceramic Society, 2018, 38(10):3564-3572. [93] SONG W J, YANG S J, FUKUMOTO M, et al. Impact interaction of in-flight high-energy molten volcanic ash droplets with jet engines[J]. Acta Materialia, 2019, 171:119-131. [94] ZHU W, CHEN H Y, YANG L, et al. Phase field model for diffusion-reaction stress field in the thermal barrier coatings corroded by the molten CMAS[J]. Engineering Failure Analysis, 2020, 111:104486. [95] ZHOU P F, LI G F, ZHANG Y Q, et al. Infiltration mechanism of Ca-Mg-Al-silicate (CMAS) melt on Yttria stabilized zirconia (YSZ) columnar crystal at high temperature:First-principles research[J]. Applied Surface Science, 2020, 513:145712. [96] COSTA G, HARDER B J, WIESNER V L, et al. Thermodynamics of reaction between gas-turbine ceramic coatings and ingested CMAS corrodents[J]. Journal of the American Ceramic Society, 2019, 102(5):2948-2964. [97] ZHENG H Z, CHEN Z, LI G F, et al. High-temperature corrosion mechanism of YSZ coatings subject to calcium-magnesium-aluminosilicate (CMAS) deposits:First-principles calculations[J]. Corrosion Science, 2017, 126:286-294. [98] NARAPARAJU R, SCHULZ U, MECHNICH P, et al. Degradation study of 7 wt.% yttria stabilised zirconia (7YSZ) thermal barrier coatings on aero-engine combustion chamber parts due to infiltration by different CaO-MgO-Al2O3-SiO2 variants[J]. Surface and Coatings Technology, 2014, 260:73-81. [99] MACK D E, LAQUAI R, MVLLER B, et al. Evolution of porosity, crack density, and CMAS penetration in thermal barrier coatings subjected to burner rig testing[J]. Journal of the American Ceramic Society, 2019, 102(10):6163-6175. [100] WU Y Y, LUO H, CAI C Y, et al. Comparison of CMAS corrosion and sintering induced microstructural characteristics of APS thermal barrier coatings[J]. Journal of Materials Science & Technology, 2019, 35(3):440-447. [101] LOKACHARI S, SONG W J, YUAN J Y, et al. Influence of molten volcanic ash infiltration on the friability of APS thermal barrier coatings[J]. Ceramics International, 2020, 46(8):11364-11371. [102] RAI A K, BHATTACHARYA R S, WOLFE D E, et al. CMAS-resistant thermal barrier coatings (TBC)[J]. International Journal of Applied Ceramic Technology, 2009, 7(5):662-674. [103] WANG L, GUO L, LI Z M, et al. Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate (CMAS) attack[J]. Ceramics International, 2015, 41(9):11662-11669. [104] GAO L H, GUO H B, GONG S K, et al. Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium-magnesium-alumina-silicate penetration[J]. Journal of the European Ceramic Society, 2014, 34(10):2553-2561. [105] DREXLER J M, GLEDHILL A D, SHINODA K, et al. Jet engine coatings for resisting volcanic ash damage[J]. Advanced Materials, 2011, 23(21):2419-2424. [106] KRÄMER S, YANG J, LEVI C G. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts[J]. Journal of the American Ceramic Society, 2008, 91(2):576-583. [107] BACOS M, DORVAUX J, LANDAIS S. 10 years-activities at Onera on advanced thermal barrier coatings[J]. High Temperature Materials, 2011(3):hal-01183631. [108] ZHANG B P, SONG W J, WEI L L, et al. Novel thermal barrier coatings repel and resist molten silicate deposits[J]. Scripta Materialia, 2019, 163:71-76. [109] YANG W Q, YE F X, YAN S, et al. The corrosion behaviors of thermal barrier material of M-YTaO4 attacked by CMAS at 1250℃[J]. Ceramics International, 2020, 46(7):9311-9318. [110] HAZEL B T, IRENE S, CHRISTINE G, et al. Protection of thermal barrier coating with an impermeable barrier coating:US2006/0115659A1[P]. 2006-06-01. [111] GLEDHILL A D, REDDY K M, DREXLER J M, et al. Mitigation of damage from molten fly ash to air-plasma-sprayed thermal barrier coatings[J]. Materials Science and Engineering:A, 2011, 528(24):7214-7221. [112] DREXLER J M, CHEN C H, GLEDHILL A D, et al. Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca-Mg-Al-silicate glass[J]. Surface and Coatings Technology, 2012, 206(19-20):3911-3916. [113] CHRISTOPHER W S, KENNEBUNK M. Calcium-magnesium alumino-silicatet (CMAS) resistant thermalbarrier coatings, systems, and methods of production thereof:US10934217 B2[P]. 2021-03-02. [114] HAZEL B T, GORMAN M, NAGARAJ B A. Protection of thermal barrier coating by a sacrificial coating:US7666528[P]. 2010-02-23. [115] FANG H J, WANG W Z, HUANG J B, et al. Investigation of CMAS resistance of sacrificial plasma-sprayed mullite-YSZ protective layer on 8YSZ thermal barrier coating[J]. Corrosion Science, 2020, 173:108764. [116] TAN Z Y, YANG Z H, ZHU W, et al. Mechanical properties and calcium-magnesium-alumino-silicate (CMAS) corrosion behavior of a promising Hf6Ta2O17 ceramic for thermal barrier coatings[J]. Ceramics International, 2020, 46(16):25242-25248. [117] MOHAN P, YAO B, PATTERSON T, et al. Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation[J]. Surface and Coatings Technology, 2009, 204(6-7):797-801. [118] SENTURK B S, GARCES H F, ORTIZ A L, et al. CMAS-resistant plasma sprayed thermal barrier coatings based on Y2O3-stabilized ZrO2 with Al3+ and Ti4+ solute additions[J]. Journal of Thermal Spray Technology, 2014, 23(4):708-715. [119] YIN B B, ZHANG F, ZHU W, et al. Effect of Al2O3 modification on the properties of YSZ:Corrosion resistant, wetting and thermal-mechanical properties[J]. Surface and Coatings Technology, 2019, 357:161-171. [120] YAN Z, GUO L, ZHANG Z, et al. Versatility of potential protective layer material Ti2AlC on resisting CMAS corrosion to thermal barrier coatings[J]. Corrosion Science, 2020, 167:108532. [121] ROSENZWEIG L S, RUUD J A, SIVARAMAKRISHNAN S. CMAS resistant thermal barrier coatings:US10179945[P]. 2019-01-15. [122] YE F X, YUAN Y H, YAN S, et al. High-temperature corrosion mechanism of a promising scandium tantalate ceramic for next generation thermal barrier coating under molten calcium-magnesium-aluminosilicate (CMAS)[J]. Materials Chemistry and Physics, 2020, 256:123679. |
[1] | Yang SUN, Jian HUANG, Chenchen HAN, Zhenqiang ZHAO, Haili ZHOU, Fangfang SUN, Chao LI, Chao ZHANG, Liquan ZHANG. Comparison of in-plane mechanical properties of 2D and 3D woven composites [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 428267-428267. |
[2] | Zhiwen LI, Changchun CAI, Huan YU, Zhifeng XU, Zhenjun WANG, Rongxing LI. Bending properties of composite braided structure T⁃shaped parts of Cf/Al composite material [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 427510-427510. |
[3] | DENG Yunfei, ZHOU Nan, TIAN Rui, WEI Gang. Response characteristics of sandwich structure with S-shaped CFRP folded core under low velocity impact [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 525446-525446. |
[4] | ZOU Qi, YE Yiyun, JIAO Junke, WU Zhisheng, XU Zifa, ZHANG Wenwu. Performance analysis of carbon fiber reinforced thermalsetting composite-titanium alloy laser joint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 625037-625037. |
[5] | LAN Zeyu, YU Huan, XU Zhifeng, SHUAI Liang, HU Yinsheng. High temperature compressive properties and failure mechanism of Cf/Al composites with different braided structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 424488-424488. |
[6] | SHEN Gaofeng, WANG Zhenjun, LIU Fenghua, ZHANG Yingfeng, CAI Changchun, XU Zhifeng, YU Huan. Quasi-static tensile behavior and failure mechanism of laminated puncture CF/Al composites [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 424816-424816. |
[7] | WANG Haowei, XU Tingxue, WANG Weiya. Test method of failure mechanism consistency based on degradation model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(3): 889-897. |
[8] | LU Zi-xing;WANG Song;LI Zhong-ming;LU Ai;LIU Jing. Macroscopic and Microscopic Mechanical Properties of Polyurethane Syntactic Foams Filled with Hollow Microspheres [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2006, 27(5): 799-804. |
[9] | AN Wei-guang;ZHAO Wei-tao;WU Xiang-guo. Failure Mechanism and Reliability Analysis of Stochastic Structural System Considering Static Strength and Fatigue [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(6): 710-714. |
[10] | GAO Yong-shuan;CHEN Li-qiang;GONG Sheng-kai;XU Hui-bin. Failure Behavior of Thermal Barrier Coatings in Creep Environment [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2005, 26(1): 121-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341