Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (15): 529049-529049.doi: 10.7527/S1000-6893.2023.29049
• Reviews • Previous Articles
Guangsheng ZHU1, Shiyong YAO2, Yi DUAN2()
Received:
2023-05-23
Revised:
2023-05-26
Accepted:
2023-06-06
Online:
2023-08-15
Published:
2023-06-06
Contact:
Yi DUAN
E-mail:duanyeebj@163.com
Supported by:
CLC Number:
Guangsheng ZHU, Shiyong YAO, Yi DUAN. Research progress and engineering application of flow control technology for drag and heat reduction of high-speed vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 529049-529049.
1 | STALDER J R, NIELSEN H V. Heat transfer from a hemisphere-cylinder equipped with flow-separation spikes: NACA-TN-3287[R]. Washington, D.C.: NASA, 1954. |
2 | AHMED M Y M, QIN N. Recent advances in the aerothermodynamics of spiked hypersonic vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6): 425-449. |
3 | WANG Z G, SUN X W, HUANG W, et al. Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows: A survey[J]. Acta Astronautica, 2016, 129: 95-110. |
4 | SUN X W, HUANG W, OU M, et al. A survey on numerical simulations of drag and heat reduction mechanism in supersonic/hypersonic flows[J]. Chinese Journal of Aeronautics, 2019, 32(4): 771-784. |
5 | HUANG W, CHEN Z, YAN L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review[J]. Progress in Aerospace Sciences, 2019, 105: 31-39. |
6 | KARIMI M S, OBOODI M J. Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows[J]. Heat and Mass Transfer, 2019, 55(2): 547-569. |
7 | RASHID S, NAWAZ F, MAQSOOD A, et al. Review of wave drag reduction techniques: Advances in active, passive, and hybrid flow control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(14): 2851-2884. |
8 | 张涵信, 黄洁, 高树椿. 带尖针杆的钝体粘性绕流的数值模拟[J]. 航空学报, 1994, 15(5): 519-525. |
ZHANG H X, HUANG J, GAO S C. Numerical simulation of hypersonic flow over axisymmetric spiked body[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(5): 519-525 (in Chinese). | |
9 | 陆海波. 迎风凹腔与逆向喷流组合强化防热结构复杂流场和传热特性研究[D]. 长沙: 国防科学技术大学, 2012. |
LU H B. Research on complicated flow field and heat transfer characteristic of forward-facing cavity combined with opposing jet fortified thermal protection configuration[D]. Changsha: National University of Defense Technology, 2012 (in Chinese). | |
10 | SARAVANAN S, JAGADEESH G, REDDY K P J. Investigation of missile-shaped body with forward-facing cavity at Mach 8[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 577-591. |
11 | BURBANK P B, STALLINGS R L. Heat-transfer and pressure measurements on a flat-face cylinder at a mach number range of 2.49 to 4.44: NASA TM X-19[R]. Washington, D.C.: NASA, 1959. |
12 | 张杰, 肖锋, 黄伟, 等. 迎风凹腔及其组合体减阻防热技术研究进展[J]. 航空兵器, 2021, 28(4): 16-23. |
ZHANG J, XIAO F, HUANG W, et al. A survey of drag and heat reduction induced by forward-facing cavity and its combinations[J]. Aero Weaponry, 2021, 28(4): 16-23 (in Chinese). | |
13 | YADAV R, GUVEN U. Aerothermodynamics of a hypersonic vehicle with a forward-facing parabolic cavity at nose[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(10): 1863-1874. |
14 | YADAV R, GUVEN U. Aerodynamic heating of a hypersonic projectile with forward-facing ellipsoid cavity at nose[J]. Journal of Spacecraft and Rockets, 2015, 52(1): 157-165. |
15 | SEILER F, SRULIJES J, GIMENEZ PASTOR M, et al. Heat fluxes inside a cavity placed at the nose of a projectile measured in a shock tunnel at Mach 4.5[C]∥New Results in Numerical and Experimental Fluid Mechanics VI. Berlin: Springer, 2007: 309-316. |
16 | SILTON S I, GOLDSTEIN D B. Use of an axial nose-tip cavity for delaying ablation onset in hypersonic flow[J]. Journal of Fluid Mechanics, 2005, 528: 297-321. |
17 | 陆海波, 刘伟强. 高超声速飞行器鼻锥迎风凹腔结构防热效能研究[J]. 宇航学报, 2012, 33(8): 1013-1018. |
LU H B, LIU W Q. Investigation on thermal protection efficiency of hypersonic vehicle nose with forward-facing cavity[J]. Journal of Astronautics, 2012, 33(8): 1013-1018 (in Chinese). | |
18 | LOPATOFF M. Wind-flow study of pressure-drag reduction at transonic speed by projecting a jet of air from the nose of a prolate spheroid of fineness ratio 6: NACA-RM-L51E09[R]. Washington, D.C.: NASA, 1951. |
19 | WARREN C H E. An experimental investigation of the effect of ejecting a coolant gas at the nose of a bluff body[J]. Journal of Fluid Mechanics, 1960, 8(3): 400. |
20 | IMOTO T, OKABE H, TANI Y. Enhancement of aerodynamic heating reduction in high enthalpy flows with opposing jet[C]∥ Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
21 | KIM Y, ROH T S, HUH H, et al. Study on the combined effect of various injection conditions on the drag reduction by a counter-flow jet in supersonic flow[J]. Aerospace Science and Technology, 2020, 98: 105580. |
22 | HAYASHI K, ASO S. Effect of pressure ratio on aerodynamic heating reduction due to opposing jet[C]∥ Proceedings of the 36th AIAA Thermophysics Conference. Reston: AIAA, 2003. |
23 | CHEN L W, WANG G L, LU X Y. Numerical investigation of a jet from a blunt body opposing a supersonic flow[J]. Journal of Fluid Mechanics, 2011, 684: 85-110. |
24 | LI S B, WANG Z G, HUANG W, et al. Effect of the injector configuration for opposing jet on the drag and heat reduction[J]. Aerospace Science and Technology, 2016, 51: 78-86. |
25 | SRIRAM R, JAGADEESH G. Film cooling at hypersonic Mach numbers using forward facing array of micro-jets[J]. International Journal of Heat and Mass Transfer, 2009, 52(15-16): 3654-3664. |
26 | BARZEGAR GERDROODBARY M, IMANI M, GANJI D D. Investigation of film cooling on nose cone by a forward facing array of micro-jets in hypersonic flow[J]. International Communications in Heat and Mass Transfer, 2015, 64: 42-49. |
27 | TAMADA I, ASO S, TANI Y. Numerical study of the effect of the opposing jet on reduction of aerodynamic heating with different nose configurations[C]∥26th International Congress of the Aeronautical Sciences, Anchorage. 2008. |
28 | HAYASHI K, ASO S, TANI Y. Experimental study on thermal protection system by opposing jet in supersonic flow[J]. Journal of Spacecraft and Rockets, 2006, 43(1): 233-235. |
29 | ZHOU C Y, JI W Y. A three-dimensional numerical investigation on drag reduction of a supersonic spherical body with an opposing jet[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(2): 163-177. |
30 | HAYASHI K, ASO S. A study on reduction of aerodynamic heating by opposing jet in supersonic flow[J]. Journal of the Japan Society for Aeronautical and Space Sciences, 2004, 52(600): 38-44. |
31 | 邓帆, 谢峰, 黄伟, 等. 逆向喷流技术在高超声速飞行器上的应用[J]. 空气动力学学报, 2017, 35(4): 485-495. |
DENG F, XIE F, HUANG W, et al. Applications of counterflowing jet technology in hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2017, 35(4): 485-495 (in Chinese). | |
32 | 高广宇, 刘冰, 黄伟, 等. 高超声速飞行器逆向射流减阻防热技术综述[J]. 战术导弹技术, 2021(4): 67-75. |
GAO G Y, LIU B, HUANG W, et al. Review of opposing jet drag reduction and thermal protection technology for hypersonic vehicle[J]. Tactical Missile Technology, 2021(4): 67-75 (in Chinese). | |
33 | 孙宗祥. 等离子体减阻技术的研究进展[J]. 力学进展, 2003, 33(1): 87-94. |
SUN Z X. Progress in plasma assisted drag reduction technology[J]. Advances in Mechanics, 2003, 33(1): 87-94 (in Chinese). | |
34 | 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405. |
WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405 (in Chinese). | |
35 | 罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报, 2017, 35(2): 252-264. |
LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica, 2017, 35(2): 252-264 (in Chinese). | |
36 | 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. |
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese). | |
37 | 马正雪, 罗振兵, 赵爱红, 等. 高超声速流场等离子体合成射流逆向喷流特性[J]. 航空学报, 2022, 43(S2): 727747. |
MA Z X, LUO Z B, ZHAO A H, et al. Reverse jet characteristics of plasma synthetic jet in hypersonic flow field[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 727747 (in Chinese). | |
38 | 陈加政, 胡国暾, 樊国超, 等. 等离子体合成射流对钝头激波的控制与减阻[J]. 航空学报, 2021, 42(7): 124773. |
CHEN J Z, HU G, FAN G C, et al. Bow shock wave control and drag reduction by plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124773 (in Chinese). | |
39 | 张旭东, 李铮, 董昊, 等. 高超声速流场等离子体逆向喷流减阻特性[J]. 航空学报, 2022, 43(S2): 727727. |
ZHANG X D, LI Z, DONG H, et al. Drag reduction characteristics of opposing plasma synthetic jet in hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 727727 (in Chinese). | |
40 | MORTAZAVI M, KNIGHT D D, AZAROVA O A, et al. Numerical simulation of energy deposition in a supersonic flow past a hemisphere[C]∥52nd Aerospace Sciences Meeting. Reston AIAA, 2014. |
41 | MILLER D S, CARLSON H W. Application of heat and force fields to sonic-boom minimization[J]. Journal of Aircraft, 1971, 8(8): 657-662. |
42 | MYRABO L. Solar-powered global aerospace transportation[C]∥ Proceedings of the 13th International Electric Propulsion Conference. Reston: AIAA, 1978. |
43 | 韩路阳, 王斌, 蒲亮, 等. 能量沉积减阻技术机理及相关问题研究进展[J]. 航空学报, 2022, 43(9): 026032. |
HAN L Y, WANG B, PU L, et al. Research progress on mechanism and related problems of energy deposition drag reduction technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 026032 (in Chinese). | |
44 | 王殿恺, 石继林, 卿泽旭. 纳秒脉冲激光能量沉积激波减阻机理数值研究[J]. 红外与激光工程, 2021, 50(3): 20200253. |
WANG D K, SHI J L, QING Z X. Numerical study of shock wave drag reduction mechanism by nanosecond-pulse laser energy deposition[J]. Infrared and Laser Engineering, 2021, 50(3): 20200253 (in Chinese). | |
45 | 方娟, 洪延姬, 李倩, 等. 高重复频率激光能量沉积减小超声速波阻的数值研究[J]. 强激光与粒子束, 2011, 23(5): 1158-1162. |
FANG J, HONG Y J, LI Q, et al. Numerical analysis of supersonic drag reduction with repetitive laser energy deposition[J]. High Power Laser and Particle Beams, 2011, 23(5): 1158-1162 (in Chinese). | |
46 | HUANG W, LIU J, XIA Z X. Drag reduction mechanism induced by a combinational opposing jet and spike concept in supersonic flows[J]. Acta Astronautica, 2015, 115: 24-31. |
47 | HUANG W. A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations[J]. Journal of Zhejiang University-SCIENCE A, 2015, 16(7): 551-561. |
48 | EGHLIMA Z, MANSOUR K. Drag reduction for the combination of spike and counterflow jet on blunt body at high Mach number flow[J]. Acta Astronautica, 2017, 133: 103-110. |
49 | OU M, YAN L, HUANG W, et al. Detailed parametric investigations on drag and heat flux reduction induced by a combinational spike and opposing jet concept in hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2018, 126: 10-31. |
50 | ZHU L, CHEN X, LI Y K, et al. Investigation of drag and heat reduction induced by a novel combinational lateral jet and spike concept in supersonic flows based on conjugate heat transfer approach[J]. Acta Astronautica, 2018, 142: 300-313. |
51 | HUANG J, YAO W X. Active flow control by a novel combinational active thermal protection for hypersonic vehicles[J]. Acta Astronautica, 2020, 170: 320-330. |
52 | ZHU L, LI Y K, GONG L K, et al. Coupled investigation on drag reduction and thermal protection mechanism induced by a novel combinational spike and multi-jet strategy in hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2019, 131: 944-964. |
53 | MENG Y S, YAN L, HUANG W, et al. Coupled investigation on drag reduction and thermal protection mechanism of a double-cone missile by the combined spike and multi-jet[J]. Aerospace Science and Technology, 2021, 115: 106840. |
54 | KIM J H, MATSUDA A, SAKAI T, et al. Wave drag reduction with acting spike induced by laser-pulse energy depositions[J]. AIAA Journal, 2011, 49(9): 2076-2078. |
55 | SUN X W, GUO Z Y, HUANG W, et al. Drag and heat reduction mechanism induced by a combinational novel cavity and counterflowing jet concept in hypersonic flows[J]. Acta Astronautica, 2016, 126: 109-119. |
56 | SUN X W, GUO Z Y, HUANG W, et al. A study of performance parameters on drag and heat flux reduction efficiency of combinational novel cavity and opposing jet concept in hypersonic flows[J]. Acta Astronautica, 2017, 131: 204-225. |
57 | BAZYMA L A, RASHKOVAN V M. Stabilization of blunt nose cavity flows by using energy deposition[J]. Journal of Spacecraft and Rockets, 2005, 42(5): 790-794. |
58 | 王得强, 许晨豪, 蒋崇文, 等. 高超声速流动控制技术研究进展[J]. 飞航导弹, 2015(9): 24-30. |
WANG D Q, XU C H, JIANG C W, et al. Research progress of hypersonic flow control technology[J]. Aerodynamic Missile Journal, 2015(9): 24-30 (in Chinese). | |
59 | 张益荣, 张毅锋, 解静, 等. 典型高超声速翼身组合体粘性干扰效应模型研究[J]. 空气动力学学报, 2017, 35(2): 186-191. |
ZHANG Y R, ZHANG Y F, XIE J, et al. Study of viscous interaction effect model for typical hypersonic wing-body figuration[J]. Acta Aerodynamica Sinica, 2017, 35(2): 186-191 (in Chinese). | |
60 | 段毅, 姚世勇, 李思怡, 等. 高超声速边界层转捩的若干问题及工程应用研究进展综述[J]. 空气动力学学报, 2020, 38(2): 391-403. |
DUAN Y, YAO S Y, LI S Y, et al. Review of progress in some issues and engineering application of hypersonicboundary laye rtransition[J]. Acta Aerodynamica Sinica, 2020, 38(2): 391-403 (in Chinese). | |
61 | FANG Y C, LIOU W W, XU S X. Skin friction prediction for high-speed turbulent boundary layers with ablation[J]. Journal of Spacecraft and Rockets, 2004, 41(5): 893-895. |
62 | HEFNER J N, BUSHNELL D. Viscous drag reduction via surface mass injection[M]∥Viscous Drag Reduction in Boundary Layers. 1990. |
63 | HWANG D P. Skin-friction reduction by a micro-blowing technique[J]. AIAA Journal, 1998, 36: 480-481. |
64 | HWANG D P. Review of research into the concept of the microblowing technique for turbulent skin friction reduction[J]. Progress in Aerospace Sciences, 2004, 40(8): 559-575. |
65 | BATHEL B, DANEHY P, INMAN J, et al. PLIF visualization of active control of hypersonic boundary layers using blowing[C]∥26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2008. |
66 | ORLIK E, FEDIOUN I, LARDJANE N. Hypersonic boundary-layer transition forced by wall injection: A numerical study[J]. Journal of Spacecraft and Rockets, 2014, 51(4): 1306-1318. |
67 | CHEN Z, YU C P, LI L, et al. Effect of uniform blowing or suction on hypersonic spatially developing turbulent boundary layers[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(6): 664702. |
68 | CERMINARA A, DEITERDING R, SANDHAM N. Direct numerical simulation of blowing in a hypersonic boundary layer on a flat plate with slots[C]∥2018 Fluid Dynamics Conference. Reston: AIAA, 2018. |
69 | ZHANG Y, LIU Y, ZHANG Y, et al. Hypersonic boundary layer flow and heat transfer analysis of compressible fluid over a permeable wall with gas injection[J]. International Communications in Heat and Mass Transfer, 2021, 129: 105688. |
70 | MARCHENAY Y, OLAZABAL LOUMÉ M, CHEDE VERGNE F. Hypersonic turbulent flow reynolds-averaged navier-stokes simulations with roughness and blowing effects[J]. Journal of Spacecraft and Rockets, 2022, 59(5): 1686-1696. |
71 | MO F, SU W, GAO Z X, et al. Numerical investigations of the slot blowing technique on the hypersonic vehicle for drag reduction[J]. Aerospace Science and Technology, 2022, 121: 107372. |
72 | LEYVA I, JEWELL J, LAURENCE S, et al. On the impact of injection schemes on transition in hypersonic boundary layers[C]∥16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2009. |
73 | JEWELL J S, LEYVA I A, PARZIALE N J, et al. Effect of gas injection on transition in hypervelocity boundary layers[C]∥28th International Symposium on Shock Waves. Berlin: Springer, 2012: 735-740. |
74 | LI F, CHOUDHARI M, CHANG C L, et al. Effects of injection on the instability of boundary layers over hypersonic configurations[J]. Physics of Fluids, 2013, 25(10): 104107. |
75 | SCHNEIDER S P. Hypersonic boundary-layer transition with ablation and blowing[J]. Journal of Spacecraft and Rockets, 2010, 47(2): 225-237. |
76 | SCHMISSEUR J D. Hypersonics into the 21st century: A perspective on AFOSR-sponsored research in aerothermodynamics[J]. Progress in Aerospace Sciences, 2015, 72: 3-16. |
77 | LEYVA I, LAURENCE S, BEIERHOLM A, et al. Transition delay in hypervelocity boundary layers by means of CO2/acoustic instability interactions[C]∥47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
78 | JEWELL J, WAGNILD R, LEYVA I, et al. Transition within a hypervelocity boundary layer on a 5-degree half-angle cone in air/CO2 mixtures[C]∥51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. |
79 | GHAFFARI S, MARXEN O, IACCARINO G, et al. Numerical simulations of hypersonic boundary-layer instability with wall blowing[C]∥48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
80 | JOHNSON H, GRONVALL J, CANDLER G. Reacting hypersonic boundary layer stability with blowing and suction[C]∥47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. |
81 | MIRÓ MIRÓ F, PINNA F. Injection-gas-composition effects on hypersonic boundary-layer transition[J]. Journal of Fluid Mechanics, 2020, 890: R4. |
82 | MIRÓ MIRÓ F, DEHAIRS P, PINNA F, et al. Effect of wall blowing on hypersonic boundary-layer transition[J]. AIAA Journal, 2019, 57(4): 1567-1578. |
83 | FEDOROV A V, SOUDAKOV V, LEYVA I A. Stability analysis of high-speed boundary-layer flow with gas injection[C]∥7th AIAA Theoretical Fluid Mechanics Conference. Reston: AIAA, 2014. |
84 | GOYNE C P, STALKER R J, PAULL A, et al. Hypervelocity skin-friction reduction by boundary-layer combustion of hydrogen[J]. Journal of Spacecraft and Rockets, 2000, 37(6): 740-746. |
85 | STALKER R J. Control of hypersonic turbulent skin friction by boundary- layer combustion of hydrogen[J]. Journal of Spacecraft and Rockets, 2005, 42(4): 577-587. |
86 | SURAWEERA M, MEE D, STALKER R. Skin friction reduction in hypersonic turbulent flow by boundary layer combustion[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. |
87 | BARTH J E, WHEATLEY V, SMART M K. Hypersonic turbulent boundary-layer fuel injection and combustion: skin-friction reduction mechanisms[J]. AIAA Journal, 2013, 51(9): 2147-2157. |
88 | 刘宏鹏, 高振勋, 蒋崇文, 等. 可压缩湍流边界层燃烧减阻研究综述[J]. 空气动力学学报, 2020, 38(3): 593-602. |
LIU H P, GAO Z X, JIANG C W, et al. Review of researches on compressible turbulent boundary layer combustion for skin friction reduction[J]. Acta Aerodynamica Sinica, 2020, 38(3): 593-602 (in Chinese). | |
89 | 郑星, 冯黎明, 张云天, 等. 超声速边界层燃烧减阻技术研究进展[J]. 固体火箭技术, 2021, 44(4): 438-447. |
ZHENG X, FENG L M, ZHANG Y T, et al. Review of supersonic boundary layer combustion for skin friction drag reduction technology[J]. Journal of Solid Rocket Technology, 2021, 44(4): 438-447 (in Chinese). | |
90 | 王帅, 何国强, 秦飞, 等. 超声速内流道摩擦阻力分析及减阻技术研究[J]. 航空动力学报, 2019, 34(4): 908-919. |
WANG S, HE G Q, QIN F, et al. Research on skin-friction drag and drag reduction technics in a supersonic inner flow path[J]. Journal of Aerospace Power, 2019, 34(4): 908-919 (in Chinese). | |
91 | ZHANG P, XU J L, YU Y, et al. Effect of adverse pressure gradient on supersonic compressible boundary layer combustion[J]. Aerospace Science and Technology, 2019, 88: 380-394. |
92 | ZHANG P, XU J L, CUI W. Numerical study of supersonic turbulent boundary layer combustion with pressure gradient[J]. Aerospace Science and Technology, 2020, 107: 106246. |
93 | SHINE S R, NIDHI S S. Review on film cooling of liquid rocket engines[J]. Propulsion and Power Research, 2018, 7(1): 1-18. |
94 | MODLIN J M, COLWELL G T. Surface cooling of scramjet engine inlets using heat pipe, transpiration, and film cooling[J]. Journal of Thermophysics and Heat Transfer, 1992, 6(3): 500-504. |
95 | OLSEN G, NOWAK R, HOLDEN M, et al. Experimental results for film cooling in 2-D supersonic flow including coolant delivery pressure, geometry, and incident shock effects[C]∥28th Aerospace Sciences Meeting. Reston: AIAA, 1990. |
96 | HAN Q X, HE X M, TAN H Y. Experimental study on film-cooling with supersonic injection[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1998, 30(5): 491-495. |
97 | SAHOO N, KULKARNI V, SARAVANAN S, et al. Film cooling effectiveness on a large angle blunt cone flying at hypersonic speed[J]. Physics of Fluids, 2005, 17(3): 036102. |
98 | ZHANG J Z, ZHANG S C, WANG C H, et al. Recent advances in film cooling enhancement: A review[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1119-1136. |
99 | KELLER M A, KLOKER M J, OLIVIER H. Influence of cooling-gas properties on film-cooling effectiveness in supersonic flow[J]. Journal of Spacecraft and Rockets, 2015, 52(5): 1443-1455. |
100 | ZHANG S L, LI X, ZUO J Y, et al. Research progress on active thermal protection for hypersonic vehicles[J]. Progress in Aerospace Sciences, 2020, 119: 100646. |
101 | 向树红, 商圣飞, 沈自才, 等. 高超声速气膜冷却技术研究进展及发展方向[J]. 宇航材料工艺, 2020, 50(3): 1-10. |
XIANG S H, SHANG S F, SHEN Z C, et al. Research progress and development direction of hypersonic film cooling technology[J]. Aerospace Materials & Technology, 2020, 50(3): 1-10 (in Chinese). | |
102 | IFTI H S, HERMANN T, MCGILVRAY M, et al. Numerical simulation of transpiration cooling in a laminar hypersonic boundary layer[J]. Journal of Spacecraft and Rockets, 2022, 59(5): 1726-1735. |
103 | VAN FOREEST A, SIPPEL M, GÜLHAN A, et al. Transpiration cooling using liquid water[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(4): 693-702. |
104 | HOLDEN M, RODRIGUEZ K, VA J. An experimental study of transpiration cooling on the distribution of heat transfer and skin friction to a sharp slender cone at Mach 11 and 13[C]∥ 28th Aerospace Sciences Meeting. Reston: AIAA, 1990. |
105 | CAMILLO G P, WAGNER A, DITTERT C, et al. Experimental investigation of the effect of transpiration cooling on second mode instabilities in a hypersonic boundary layer[J]. Experiments in Fluids, 2020, 61: 162. |
106 | SU H, WANG J H, HE F, et al. Numerical investigation on transpiration cooling with coolant phase change under hypersonic conditions[J]. International Journal of Heat and Mass Transfer, 2019, 129: 480-490. |
107 | BÖHRK H. Transpiration-cooling with porous ceramic composites in hypersonic flow: STO-EN-AVT-261, 5-1-5-26[R]. |
108 | 沈斌贤, 曾磊, 刘骁, 等. 高超声速飞行器主动质量引射热防护技术研究进展[J]. 空气动力学学报, 2022, 40(6): 1-13. |
SHEN B X, ZENG L, LIU X, et al. Research progress of thermal protection technique by activemass injection for hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2022, 40(6): 1-13 (in Chinese). |
[1] | Chang WANG, Long HE, Dongxia XU, Min TANG, Shuai MA, Ximing WU. Flow control drag reduction of hub on coaxial rigid rotor aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529084-529084. |
[2] | Xuehe WANG, Chunshuo CHAI, Shilong XING, Feng FAN, Shuilin HUANG. Design of coaxial high⁃speed helicopter airfoil in reverse flow region and its drag reduction mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529960-529960. |
[3] | Wei XIE, Zhenbing LUO, Yan ZHOU, Qiang LIU, Jianjun WU, Hao DONG. Double wedge shock interaction control using steady jet in hypersonic flow: Experimental study [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128813-128813. |
[4] | Guangjia LI, Hongbo WANG, Kai ZHANG, Zhisheng YI. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529644-529644. |
[5] | Hongbo WANG, Yu ZENG, Dapeng XIONG, Yixin YANG, Mingbo SUN. Improvement of shock wave and compressibility effects in SST turbulence model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 128694-128694. |
[6] | Haixing LI, Feng ZHOU, Wei YAN, Feng BAI, Keliang ZHAO. Effects of roughness ice on aerodynamic performance of civil aircraft horizontal tail [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128657-128657. |
[7] | Xueliang LI, Chuangchuang LI, Wei SU, Jie WU. Experiment of influence of distributed roughness elements on hypersonic boundary layer instability [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128627-128627. |
[8] | Jiang LAI, Zhaolin FAN, Qian WANG, Siwei DONG, Fulin TONG, Xianxu YUAN. Direct numerical simulation of hypersonic cone-flare model at angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128610-128610. |
[9] | Fanyu ZENG, Yunlong QIU, Zhanwei CAO, Lun ZHANG, Weifang CHEN. Flow control and drag reduction characteristics of micro-blowing array on supersonic turbulent boundary layer [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729396-729396. |
[10] | Shiqi GAO, Bo DING, Xuzhen XIE, Zheng LI, Lin CHEN, Shouyuan QIAN, Zihan JIAO, Guanghui BAI. Drag reduction mechanism using plasma synthetic jet in high⁃speed flow [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729373-729373. |
[11] | Wang WANG, Caiyan RAO, Cong XU, Siyi LI, Yi DUAN, Jian ZHANG. Control effect of laser energy deposition on supersonic inlet flow [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729424-729424. |
[12] | Yu ZENG, Hongbo WANG, Mingbo SUN, Chao WANG, Xu LIU. SST turbulence model improvements: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 27411-027411. |
[13] | Yinkai MA, Zhufei LI, Qi HUANG, Jiming YANG. Wingtip vortex and its interaction with oblique shock wave in wide-speed range [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 38-50. |
[14] | Weijia LIU, Yingkun LI, Xiong CHEN, Chunlei LI. Panel flutter characteristics on shock wave/boundary layer interaction based on fluid⁃structure coupling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127085-127085. |
[15] | Hongkang LIU, Jianqiang CHEN, Xinghao XIANG, Yatian ZHAO. Transition prediction for HIAD with different Reynolds numbers by improved k-ω-γtransition model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 126868-126868. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341