Acta Aeronautica et Astronautica Sinica ›› 2023, Vol. 44 ›› Issue (14): 628733-628733.doi: 10.7527/S1000-6893.2023.28733
• special column • Previous Articles
Xiaofeng SUN1,2, Guangyu ZHANG2(), Xiaoyu WANG2, Lei LI2, Xiangyang DENG3, Ronghui CHENG4
Received:
2023-03-22
Revised:
2023-04-17
Accepted:
2023-05-10
Online:
2023-07-25
Published:
2023-05-12
Contact:
Guangyu ZHANG
E-mail:guangyu.zhang@buaa.edu.cn
Supported by:
CLC Number:
Xiaofeng SUN, Guangyu ZHANG, Xiaoyu WANG, Lei LI, Xiangyang DENG, Ronghui CHENG. Research progress in aero-engine combustion instability prediction and control[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628733-628733.
Table 1
Characteristics relating to combustion instabilities of two combustors
类型 | 加力燃烧室 | LPP环形燃烧室 |
---|---|---|
特点 | 进口温度高(~1 300 K) 进口流速高(~290 m/s) 结构紧凑(燃油/稳定器一体化) 包线工况复杂(战机Ma~2.0) | 高温高压(~2 000 K,40 atm) 结构紧凑(燃烧室长度~0.2 m) 能量密度比高(~100 MW/(m³∙bar)) 排放更低(比CAEP6降低60%) |
火焰 | 非预混钝体火焰 | 预混旋流火焰 |
非定常过程 | 燃油喷射穿透、雾化、 蒸发、当量比脉动、剪切层、尾迹、燃烧火焰 | 燃油雾化蒸发、预混、旋流、涡破碎、PVC、剪切层、燃烧火焰 |
模态特征 | 纵向不稳定模态50~300 Hz、 横向(周向/径向)不稳定模态400~1 500 Hz | 周向一阶、二阶不稳定性模态400~1 000 Hz |
常用控制方法 | 防振屏设计、火焰稳定器设计、供油规律设计、喷口调节设计 | 旋流器设计、分级燃烧、壁面声耗散设计 |
1 | LIEUWEN T C, YANG V. Combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms and modeling[M]. Reston: AIAA, 2005. |
2 | 李磊, 孙晓峰. 推进动力系统燃烧不稳定性产生的机理、预测及控制方法[J]. 推进技术, 2010, 31(6): 710-720. |
LI L, SUN X F. Mechanism, prediction and control method of combustion instability in propulsion system[J]. Journal of Propulsion Technology, 2010, 31(6): 710-720 (in Chinese). | |
3 | POINSOT T. Prediction and control of combustion instabilities in real engines[J]. Proceedings of the Combustion Institute, 2017, 36(1): 1-28. |
4 | Lewis Laboratory Staff. A summary of preliminary investigations into the characteristics of combustion screech in ducted burners: 1384[R]. Washington, D.C.: NACA, 1958. |
5 | OEFELEIN J C, YANG V. Comprehensive review of liquid-propellant combustion instabilities in F-1 engines[J]. Journal of Propulsion and Power, 1993, 9(5): 657-677. |
6 | FOUST M, THOMSEN D, STICKLES R, et al. Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines[C]∥ Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
7 | LOVETT J, BROGAN T, PHILIPPONA D, et al. Development needs for advanced afterburner designs[C]∥ Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2004. |
8 | 程荣辉, 张志舒, 陈仲光. 第四代战斗机动力技术特征和实现途径[J]. 航空学报, 2019, 40(3): 022698. |
CHENG R H, ZHANG Z S, CHEN Z G. Technical characteristics and implementation of the fourth-generation jet fighter engines[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 022698 (in Chinese). | |
9 | EBRAHIMI H. Overview of gas turbine augmentor design, operation, and combustion oscillation[C]∥ Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2006. |
10 | MONGIA H. TAPS: A fourth generation propulsion combustor technology for low emissions[C]∥ Proceedings of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2003. |
11 | RAYLEIGH J W S. The theory of sound[M]. 2nd ed. London: Macmillan, 1896. |
12 | HOEIJMAKERS M, KORNILOV V, LOPEZ ARTEAGA I, et al. Intrinsic instability of flame-acoustic coupling[J]. Combustion and Flame, 2014, 161(11): 2860-2867. |
13 | EMMERT T, BOMBERG S, POLIFKE W. Intrinsic thermoacoustic instability of premixed flames[J]. Combustion and Flame, 2015, 162(1): 75-85. |
14 | SUMMERFIELD M. A theory of unstable combustion in liquid propellant rocket systems[J]. Journal of the American Rocket Society, 1951, 21(5): 108-114. |
15 | CROCCO L, CHENG S I. Theory of combustion instability in liquid propellant rocket motors[J]. The Aeronautical Journal, 1956, 60(547): 493-494. |
16 | ZINN B T. A theoretical study of nonlinear combustion instability in liquid-propellant rocket engines[J]. AIAA Journal, 1968, 6(10): 1966-1972. |
17 | ZINN B T, LORES M E. Application of the Galerkin method in the solution of non-linear axial combustion instability problems in liquid rockets[J]. Combustion Science and Technology, 1971, 4(1): 269-278. |
18 | KOSTKA S, LYNCH A C, HUELSKAMP B C, et al. Characterization of flame-shedding behavior behind a bluff-body using proper orthogonal decomposition[J]. Combustion and Flame, 2012, 159(9): 2872-2882. |
19 | ROGERS D E, MARBLE F E. A mechanism for high-frequency oscillation in ramjet combustors and afterburners[J]. Journal of Jet Propulsion, 1956, 26(6): 456-462. |
20 | LOVETT J A, CROSS C, LUBARSKY E, et al. A review of mechanisms controlling bluff-body stabilized flames with closely-coupled fuel injection[C]∥ ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2011. |
21 | LUBARSKY E, CROSS C, CUTRIGHT J, et al. Novel carbureted flameholder for improved afterburner stability[C]∥ Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
22 | SHANBHOGUE S J, HUSAIN S, LIEUWEN T. Lean blowoff of bluff body stabilized flames: Scaling and dynamics[J]. Progress in Energy and Combustion Science, 2009, 35(1): 98-120. |
23 | EMERSON B, LIEUWEN T. Dynamics of harmonically excited, reacting bluff body wakes near the global hydrodynamic stability boundary[J]. Journal of Fluid Mechanics, 2015, 779: 716-750. |
24 | EMERSON B, O'CONNOR J, JUNIPER M, et al. Density ratio effects on reacting bluff-body flow field characteristics[J]. Journal of Fluid Mechanics, 2012, 706: 219-250. |
25 | PALIES P, SCHULLER T, DUROX D, et al. Modeling of premixed swirling flames transfer functions[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2967-2974. |
26 | WORTH N A, DAWSON J R. Self-excited circumferential instabilities in a model annular gas turbine combustor: Global flame dynamics[J]. Proceedings of the Combustion Institute, 2013, 34(2): 3127-3134. |
27 | BOURGOUIN J F, DUROX D, SCHULLER T, et al. Ignition dynamics of an annular combustor equipped with multiple swirling injectors[J]. Combustion and Flame, 2013, 160(8): 1398-1413. |
28 | WORTH N A, DAWSON J R. Modal dynamics of self-excited azimuthal instabilities in an annular combustion chamber[J]. Combustion and Flame, 2013, 160(11): 2476-2489. |
29 | LIEUWEN T, TORRES H, JOHNSON C, et al. A mechanism of combustion instability in lean premixed gas turbine combustors[J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(1): 182-189. |
30 | ZUKOSKI E E, MARBLE F E. Experiments concerning the mechanism of flame blowoff from bluff bodies: 82A[R]. Pasadena: California Institute of Technology, 1983. |
31 | ZUKOSKI E E. Afterburners[M]∥OATES G C. Aerothermodynamics of Aircraft Engine Components. Reston: AIAA, 1985: 45-144. |
32 | SUN X, WANG X. Fundamentals of aeroacoustics with applications to aeropropulsion systems[M]. Amsterdam: Elsevier, 2020. |
33 | SHANBHOGUE S, SHIN D H, HEMCHANDRA S, et al. Flame-sheet dynamics of bluff-body stabilized flames during longitudinal acoustic forcing[J]. Proceedings of the Combustion Institute, 2009, 32(2): 1787-1794. |
34 | EMERSON B, MONDRAGON U, ACHARYA V, et al. Velocity and flame wrinkling characteristics of a transversely forced, bluff-body stabilized flame, part I: Experiments and data analysis[J]. Combustion Science and Technology, 2013, 185(7): 1056-1076. |
35 | BLOXSIDGE G J, DOWLING A P, LANGHORNE P J. Reheat buzz: An acoustically coupled combustion instability. Part 2. Theory[J]. Journal of Fluid Mechanics, 1988, 193: 445-473. |
36 | ACHARYA V, EMERSON B, MONDRAGON U, et al. Velocity and flame wrinkling characteristics of a transversely forced, bluff-body stabilized flame, part II: flame response modeling and comparison with measurements[J]. Combustion Science and Technology, 2013, 185(7): 1077-1097. |
37 | 张弛, 林宇震, 徐华胜, 等. 民用航空发动机低排放燃烧室技术发展现状及水平[J]. 航空学报, 2014, 35(2): 332-350. |
ZHANG C, LIN Y Z, XU H S, et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 332-350 (in Chinese). | |
38 | HUANG Y, YANG V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science, 2009, 35(4): 293-364. |
39 | LUCCA-NEGRO O, O'DOHERTY T. Vortex breakdown: a review[J]. Progress in Energy and Combustion Science, 2001, 27(4): 431-481. |
40 | SYRED N. A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems[J]. Progress in Energy and Combustion Science, 2006, 32(2): 93-161. |
41 | PASCHEREIT C O, SCHUERMANS B, POLIFKE W, et al. Measurement of transfer matrices and source terms of premixed flames[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(2): 239-247. |
42 | CANDEL S, DUROX D, SCHULLER T, et al. Dynamics of swirling flames[J]. Annual Review of Fluid Mechanics, 2014, 46: 147-173. |
43 | CANDEL S, DUROX D, SCHULLER T, et al. Progress and challenges in swirling flame dynamics[J]. Comptes Rendus Mécanique, 2012, 340(11-12): 758-768. |
44 | PALIES P, DUROX D, SCHULLER T, et al. The combined dynamics of swirler and turbulent premixed swirling flames[J]. Combustion and Flame, 2010, 157(9): 1698-1717. |
45 | CUMPSTY N A, MARBLE F E. The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1977, 357(1690): 323-344. |
46 | DOWLING A P. Nonlinear self-excited oscillations of a ducted flame[J]. Journal of Fluid Mechanics, 1997, 346: 271-290. |
47 | NOIRAY N, DUROX D, SCHULLER T, et al. A unified framework for nonlinear combustion instability analysis based on the flame describing function[J]. Journal of Fluid Mechanics, 2008, 615: 139-167. |
48 | FANACA D, ALEMELA P R, HIRSCH C, et al. Comparison of the flow field of a swirl stabilized premixed burner in an annular and a single burner combustion chamber[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(7): 071502. |
49 | RAJENDRAM SOUNDARARAJAN P, DUROX D, VIGNAT G, et al. Comparison of flame describing functions measured in single and multiple injector configurations[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(11): 111023. |
50 | SMITH T E, CHTEREV I P, EMERSON B L, et al. Comparison of single- and multinozzle reacting swirl flow dynamics[J]. Journal of Propulsion and Power, 2018, 34(2): 384-394. |
51 | ZHENG J Y, LI L, WANG G Q, et al. The response of a conical flame to a dual-frequency excitation[C]∥ INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2023. |
52 | JIANG X Z, LI J X, YANG L J, et al. A nonlinearly kinematic model of the asymmetrically turbulent premixed slit flame subjected to two-way harmonic disturbances[J]. Combustion and Flame, 2022, 240: 112021. |
53 | WANG X Y, HECKL M. 3-D thermoacoustic instability analysis based on Green’s function approach[J]. Journal of Sound and Vibration, 2022, 537: 116816. |
54 | RAJENDRAM SOUNDARARAJAN P, VIGNAT G, DUROX D, et al. Do flame describing functions suitably represent combustion dynamics under self-sustained oscillations?[J]. Journal of Sound and Vibration, 2022, 534: 117034. |
55 | WOLF P, BALAKRISHNAN R, STAFFELBACH G, et al. Using LES to study reacting flows and instabilities in annular combustion chambers[J]. Flow, Turbulence and Combustion, 2012, 88(1): 191-206. |
56 | CHEN Z X, SWAMINATHAN N, MAZUR M, et al. Numerical investigation of azimuthal thermoacoustic instability in a gas turbine model combustor[J]. Fuel, 2023, 339: 127405. |
57 | DOWLING A P, STOW S R. Acoustic analysis of gas turbine combustors[J]. Journal of Propulsion and Power, 2003, 19(5): 751-764. |
58 | STOW S R, DOWLING A P. A time-domain network model for nonlinear thermoacoustic oscillations[J]. Journal of Engineering for Gas Turbines and Power, 2009, 131(3): 031502. |
59 | 孙晓峰, 董旭, 张光宇, 等. 特征值理论在稳定性预测中的应用研究进展[J]. 航空学报, 2022, 43(10): 527408. |
SUN X F, DONG X, ZHANG G Y, et al. Progress review of application of eigenvalue theory to stability prediction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527408 (in Chinese). | |
60 | DOWLING A P. The calculation of thermoacoustic oscillations[J]. Journal of Sound and Vibration, 1995, 180(4): 557-581. |
61 | XU L L, ZHENG J Y, WANG G Q, et al. Investigation on the intrinsic thermoacoustic instability of a lean-premixed swirl combustor with an acoustic liner[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6095-6103. |
62 | STOW S R, DOWLING A P. Thermoacoustic oscillations in an annular combustor[C]∥Turbo Expo: Power for Land, Sea, and Air. New York: ASME, 2001. |
63 | LI L, SUN X F. Effect of vorticity waves on azimuthal instabilities in annular chambers[J]. Combustion and Flame, 2015, 162(3): 628-641. |
64 | LI L. Mode coupling due to the non-uniformly distributed heat release in combustion instabilities[J]. Journal of Sound and Vibration, 2018, 429: 206-223. |
65 | YANG D, MORGANS A S. Low-order network modeling for annular combustors exhibiting longitudinal and circumferential modes[C]∥ Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. New York: ASME, 2018. |
66 | BELLUCCI V, FLOHR P, PASCHEREIT C O, et al. On the use of Helmholtz resonators for damping acoustic pulsations in industrial gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(2): 271-275. |
67 | PARMENTIER J F, SALAS P, WOLF P, et al. A simple analytical model to study and control azimuthal instabilities in annular combustion chambers[J]. Combustion and Flame, 2012, 159(7): 2374-2387. |
68 | LI L, GUO Z H, ZHANG C Y, et al. A passive method to control combustion instabilities with perforated liner[J]. Chinese Journal of Aeronautics, 2010, 23(6): 623-630. |
69 | YOU D, YANG V, SUN X F. Three-dimensional linear stability analysis of gas turbine combustion dynamics[M]∥ LIEUWEN T C, YANG V. Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. Reston: AIAA, 2006: 415-443. |
70 | ZHANG G Y, ZHANG X X, WANG X Y, et al. Modeling analysis of combustion instability in an annular combustor equipped with circumferentially segmented perforated liner[J]. Journal of Sound and Vibration, 2023, 549: 117573. |
71 | SUN X F, WANG X Y, DU L, et al. A new model for the prediction of turbofan noise with the effect of locally and non-locally reacting liners[J]. Journal of Sound and Vibration, 2008, 316(1-5): 50-68. |
72 | ZHANG G Y, WANG X Y, LI L, et al. Control of thermoacoustic instability with a drum-like silencer[J]. Journal of Sound and Vibration, 2017, 406: 253-276. |
73 | QIN L, WANG X Y, ZHANG G Y, et al. Effect of nonlinear flame response on the design of perforated liners in suppression of combustion instability[J]. Journal of Sound and Vibration, 2021, 511: 116314. |
74 | ZHANG G Y, WANG X Y, LI L, et al. Effects of perforated liners on controlling combustion instabilities in annular combustors[J]. AIAA Journal, 2020, 58(7): 3100-3114. |
75 | SUN X, JING X, ZHANG H, et al. Effect of grazing-bias flow interaction on acoustic impedance of perforated plates[J]. Journal of Sound and Vibration, 2002, 254(3): 557-573. |
76 | JING X D, SUN X F. Experimental investigations of perforated liners with bias flow[J]. The Journal of the Acoustical Society of America, 1999, 106(5): 2436-2441. |
77 | JING X D, SUN X F. Effect of plate thickness on impedance of perforated plates with bias flow[J]. AIAA Journal, 2000, 38(9): 1573-1578. |
78 | DAI W, WANG X L, WANG X Y, et al. Acoustic scattering mechanism and noise attenuation of circumferentially non-uniform liner with spectral-wave guide method [J/OL]. Chinese Journal of Aeronautics, (2023-05-31) [2023-06-25]. . |
79 | QIN L, WANG X Y, ZHANG G Y, et al. Control of azimuthal combustion instability through the injector mounting surface of annular combustors [J/OL]. AIAA Journal, (2023-06-23) [2023-06-25]. . |
[1] | Da MO, Yuzhen LIN, Xiao HAN, Hongyu MA, Yixiong LIU. Research progress and future prospect of hydrogen micromix combustion technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 28994-028994. |
[2] | Junfeng LIAO, Xiaodong JING, Xianghai QIU, Yonglei ZHAI, Xishan YUE, Shuangchao MA, Lin DU, Xiaofeng SUN. Experimental study on grazing flow characteristics of a new aeronautical wire mesh acoustic liner [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528537-528537. |
[3] | Shanshan TIAN, Liang JIN, Zhaobo DU, Xiangyu ZHONG, Wei HUANG, Yuanyang LIU. Research progress of shock wave/boundary layer interaction controls induced by bump [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 28411-028411. |
[4] | Xiao MENG, Dan MA, Hongjun LIN, Chao CHEN. Prescribed performance control of thermoacoustic instability in aero-engine combustion chambers [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 128182-128182. |
[5] | Weidong LIU, Haoyang PENG, Shijie LIU, Hailong ZHANG, Xueqiang YUAN. Research Progresses of rotating detonation combustion and its application [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528875-528875. |
[6] | Tao CHEN, Xingping XU, Hongda ZHANG, Xingsi HAN. Numerical simulation of combustion instability by SATES coupling with FGM combustion model [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628207-628207. |
[7] | WANG Guangxu, TAN Yonghua, ZHUANG Fengchen, CHEN Jianhua, YANG Bao'e, HONG Liu. Suppression effect of injection intensity distribution on longitudinal combustion instability [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 126018-126018. |
[8] | LI Jia'nan, LEI Fanpei, YANG Anlong, ZHOU Lixin. Atomization characteristics of impinging liquid jets coupled with forced perturbation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(12): 124027-124027. |
[9] | HOU Yufei, LI Zhiping. Effect of bionic sinusoidal leading-edge on dynamic stall of airfoil [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(1): 123276-123276. |
[10] | KANG Zhongtao, LI Xiangdong, MAO Xiongbing, LI Qinglian. Review on gas liquid shear coaxial injector in liquid rocket engine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(9): 22221-022221. |
[11] | LIU Zeyu, ZHANG Chi, HAN Xiao, LIN Yuzhen. Effects of stratification ratio on structure of separated stratified premixed swirl flame [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(3): 121692-121692. |
[12] | ZHANG Weiguang, WANG Xiaoyu, SUN Xiaofeng. Passive control of fan noise by vane sweep and lean [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(2): 120265-120273. |
[13] | ZHU Ziqiang, JU Shengjun, WU Zongcheng. Laminar flow active/passive control technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(7): 2065-2090. |
[14] | Li Wei;Qiao Weiyang;Xu Kaifu;Luo Hualing. Numerical Study of Influence on Tip Leakage Flow in Axial Turbine with an Improved Tip [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2008, 29(5): 1125-1132. |
[15] | JING Xiao-dong;SUN Xiao-feng. INVESTIGATION OF GRAZING FLOW EFFECT ON THE IMPEDANCE OF A PERFORATED PLATE [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2002, 23(5): 405-410. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341