[1] 杨立军, 富庆飞. 液体火箭发动机推力室设计[M]. 北京:北京航空航天大学出版社, 2013. YANG L J, FU Q F. Design of liquid rocket engine chamber[M]. Beijing:Beihang University Press, 2013(in Chinese). [2] 黄玉辉. 液体火箭发动机燃烧稳定性理论、数值模拟和实验研究[D]. 长沙:国防科技大学, 2001. HUANG Y H. Theory, numerical simulation and experimental investigation of combustion instability in liquid rocket engine[D]. Changsha:National University of Defense Technology, 2001(in Chinese). [3] SHARIFI V, KEMPF A M, BECK C. Large-eddy simulation of acoustic flame response to high-frequency transverse excitations[J]. AIAA Journal, 2018, 57(7):1-14. [4] ANDERSON W E. The effects of atomization on combution instability[D]. State College:The Pennsylvania State University, 1996. [5] ANDERSON W E, RYAN H M, SANTORO R J, et al. Combustion instability mechanisms in liquid rocket engines using impinging jet injectors:AIAA-1995-2357[R]. Reston:AIAA, 1995. [6] KIM S J, WILLIAMS A F. Acoustic-instability boundaries in liquid-propellant rockets:Theoretical explanation of empirical correlation[J]. Journal of Propulsion and Power, 1996, 12(3):621-624. [7] QIN J, ZHANG H, WANG B. Numerical investigation on combustion instability in a small MMH/NTO liquid rocket engine:AIAA-2016-5087[R]. Reston:AIAA, 2016. [8] BAI X, CHENG P, LI Q, et al. Effects of self-pulsation on combustion instability in a liquid rocket engine[J]. Experimental Thermal and Fluid Science, 2020, 114(1):110038. [9] BAILLOT F, BLAISOT J B, BOISDRON G, et al. Behavior of an air-assisted jet submitted to a transverse high-frequency acoustic field[J]. Journal of Fluid Mechanics, 2009, 640:305-342. [10] CARPENTIER J B, BAILLOT F, BLAISOT J B, et al. Behavior of cylindrical liquid jets evolving in a transverse acoustic field[J]. Physics of Fluids, 2009, 21(2):023601. [11] FICUCIELLO A, BLAISOT J B, RICHARD C, et al. Investigation of air-assisted sprays submitted to high frequency transverse acoustic fields:Droplet clustering[J]. Physics of Fluids, 2017, 29(6):067103. [12] HARDI J S, MARTINEZ H C G, OSCHWALD M, et al. LOx jet atomization under transverse acoustic oscillations[J]. Journal of Propulsion and Power, 2014, 30(2):337-349. [13] RUTARD N, DOREY L H, TOUZE C L, et al. Large-eddy simulation of an air-assisted liquid jet under a high-frequency transverse acoustic forcing[J]. International Journal of Multiphase Flow, 2020, 122:103144. [14] DIGHE S, GADGIL H. Dynamics of liquid sheet breakup in the presence of acoustic excitation[J]. International Journal of Multiphase Flow, 2018, 99:347-362. [15] DIGHE S, GADGIL H. Atomization of acoustically forced liquid sheets[J]. Journal of Fluid Mechanics, 2019, 880:653-683. [16] DIGHE S, GADGIL H. Effect of transverse acoustic forcing on the characteristics of impinging jet atomization[J]. Atomization and Sprays, 2019, 29(1):79-103. [17] HAKIM L, SCHMITT T, DUCRUIX S, et al. Dynamics of a transcritical coaxial flame under a high-frequency transverse acoustic forcing:Influence of the modulation frequency on the flame response[J]. Combustion and Flame, 2015, 162(10):3482-3502. [18] 李佳楠, 雷凡培, 周立新, 等. 液体火箭发动机背压振荡环境下的雾化特性研究进展[J]. 推进技术, 2019, 40(11):2401-2419. LI J N, LEI F P, ZHOU L X, et al. Recent advances of atomization characteristics under oscillating backpressure conditions in liquid rocket engines[J]. Journal of Propulsion Technology, 2019, 40(11):2401-2419(in Chinese). [19] HARRJE D T, READON F H. Liquid propellant rocket combustion instability:NASA-SP-194[R]. Washington, D.C.:NASA, 1972. [20] OEFELEIN J C, YANG V. Comprehensive review of liquid-propellant combustion instabilities in F-1 engines[J]. Journal of Propulsion and Power, 1993, 9(5):657-677. [21] 杨立军, 富庆飞. 燃烧室压力振荡对喷嘴出口流量振荡影响分析[J]. 火箭推进, 2008, 34(4):6-11. YANG L J, FU Q F. Investigation on the dynamic interaction between injection flow oscillation and combustion chamber pressure oscillation[J]. Journal of Rocket Propulsion, 2008, 34(4):6-11(in Chinese). [22] 杨立军, 富庆飞. 由喷嘴连接的燃烧室到供应系统压力振荡传递过程研究[J]. 航空动力学报, 2009, 24(5):1182-1186. YANG L J, FU Q F. Investigation on pressure oscillation propagation from combustion chamber to pipeline through injector[J]. Journal of Aerospace Power, 2009, 24(5):1182-1186(in Chinese). [23] CRANE L, BIRCH S, MCCORMACK P D. The effect of mechanical vibration on the break-up of a cylindrical water jet in air[J]. British Journal of Applied Physics, 1964, 15:743-751. [24] MCCORMACK P D, CRANE L, BIRCH S. An experimental and theoretical analysis of cylindrical liquid jets subjected to vibration[J]. British Journal of Applied Physics, 1965, 16:395-409. [25] CHIGIER N. Breakup of liquid sheets and jets:AIAA 1999-3640[R]. Reston:AIAA, 1999. [26] 康忠涛, 王振国, 李清廉, 等. 压力振荡对气液同轴离心式喷嘴自激振荡的影响[J]. 航空学报, 2018, 39(6):121988. KANG Z T, WANG Z G, LI Q L, et al. Influence of pressure oscillation on self-pulsation of gas-liquid swirl coaxial injector[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):121988(in Chinese). [27] HEISTER S D, RUTZ M W, HILBING J H. Effect of acoustic perturbations on liquid jet atomization[J]. Journal of Propulsion and Power, 1997, 13(1):82-88. [28] SRINIVASAN V, SALAZAR A J, SAITO K. Modeling the disintegration of modulated liquid jets using volume-of-fluid (VOF) methodology[J]. Applied Mathematical Modelling, 2011, 35:3710-3730. [29] SRINIVASAN V, SALAZAR A, SAITO K. Numerical simulation of the disintegration of forced liquid jet using volume-of-fluid method[J]. International Journal of Computational Fluid Dynamics, 2010, 24(8):317-333. [30] YANG X, TURAN A. Simulation of liquid jet atomization coupled with forced perturbation[J]. Physics of Fluids, 2017, 29(2):022103. [31] POPINET S. Gerris:A tree-based adaptive solver for the incompressible euler equations in complex geometries[J]. Journal of Computational Physics, 2003, 190(2):572-600. [32] POPINET S. An accurate adaptive solver for surface-tension driven interfacial flows[J]. Journal of Computational Physics, 2009, 228(16):5838-5886. [33] BAZAROV V, LEE E, LINEBERRY D, et al. Pulsator designs for liquid rocket injector research:AIAA-2007-5156[R]. Reston:AIAA, 2007. [34] YANG A L, LI B, YANG S R, et al. Periodic atomization characteristics of an impinging jet injector element modulated by Klystron effect[J]. Chinese Journal of Aeronautics, 2018, 31(10):1973-1984. [35] 杨尚荣, 杨岸龙, 李龙飞, 等. 喷前压力脉动对撞击式喷嘴雾化特性的影响[J]. 推进技术, 2017, 38(5):1100-1106. YANG S R, YANG A L, LI L F, et al. Effects of pressure pulsation upstream of injector on impinging injector atomizaiton[J]. Journal of Propulsion Technology, 2017, 38(5):1100-1106(in Chinese). [36] 李佳楠, 费俊, 杨伟东, 等. 直流互击式喷注单元雾化特性准直接数值模拟[J]. 推进技术, 2016, 37(4):713-725. LI J N, FEI J, YANG W D, et al. Quasi-direct numerical simulation on atomization characteristics of impinging jets injector[J]. Journal of Propulsion Technology, 2016, 37(4):713-725(in Chinese). [37] 张波涛, 张友平, 张民庆. 射流在不可压气流中破碎过程高精度仿真[J]. 火箭推进, 2018, 44(1):59-66. ZHANG B T, ZHANG Y P, ZHANG M Q. High-precision numerical simulation of breakup processes of liquid jet in incompressible airflow[J]. Journal of Rocket Propulsion, 2018, 44(1):59-66(in Chinese). [38] 杨国华, 张波涛, 周立新, 等. 液气动量比对内混式直流气液喷嘴雾化特性的影响[J]. 火箭推进, 2019, 45(5):66-73. YANG G H, ZHANG B T, ZHOU L X, et al. Effects of momentum ratio on atomization characteristics of internal mixing gas-liquid injector[J]. Journal of Rocket Propulsion, 2019, 45(5):66-73(in Chinese). [39] BRACKBILL J U, KOTHE D B, ZEMACH C A. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2):335-354. [40] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5):563-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computation fluid dynamics[J]. Advances in Mechanics, 2011, 41(5):563-589(in Chinese). [41] BORIS J P, GRINSTEIN E F, ORAN E S, et al. New insights into large eddy simulation[J]. Fluid Dynamics Research, 1992, 10(4-6):199-228. [42] HIRT C W,NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225. [43] 张磊. 界面不稳定性的数值模拟[D]. 合肥:中国科学技术大学, 2003. ZHANG L. Numerical simulations on the instability of interface[D]. Hefei:University of Science and Technology of China, 2003. [44] 李佳楠, 雷凡培, 周立新. 背压对撞击式喷嘴雾化特性影响研究[J]. 推进技术, 2020, 41(4):847-859. LI J N, LEI F P, ZHOU L X. Effects of backpressure on atomization characteristics of impinging jet injector[J]. Journal of Propulsion Technology, 2020, 41(4):847-859. [45] ZHANG P Y, WANG B. Effects of elevated ambient pressure on the disintegration of impinged sheets[J]. Physics of Fluids, 2017, 29(4):042102. [46] ANDERSON W E, RYAN H M, SANTORO R J. Impact wave-based model of impinging jet atomization[J]. Atomization and Sprays, 2006, 16:791-805. [47] MAJUMDAR N, TIRUMKUDULU M S. Dynamics of radially expanding liquid sheets[J]. Physical Review Letters, 2018, 120:164501. [48] RAYLEIGH J W S. The explanation of certain acoustical phenomena[J]. Nature, 1978, 18:319-321. |