ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2018, Vol. 39 ›› Issue (9): 22221-022221.doi: 10.7527/S1000-6893.2018.22221
• Review • Previous Articles Next Articles
KANG Zhongtao1, LI Xiangdong1, MAO Xiongbing1, LI Qinglian2
Received:
2018-04-18
Revised:
2018-05-14
Online:
2018-09-15
Published:
2018-06-20
Supported by:
CLC Number:
KANG Zhongtao, LI Xiangdong, MAO Xiongbing, LI Qinglian. Review on gas liquid shear coaxial injector in liquid rocket engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(9): 22221-022221.
[1] 王振国. 液体火箭发动机燃烧过程建模与数值仿真[M]. 北京:国防工业出版社, 2012:1-15. WANG Z G. Modelling and numerical simulations of internal combustion process of liquid rocket engines[M]. Beijing:National Defense Industry Press, 2012:1-15(in Chinese). [2] INOUE C, WATANABE T, HIMENO T, et al. Liquid jet dynamics and primary breakup characteristics at near-field of coaxial type injector:AIAA-2010-6811[R]. Reston, VA:AIAA, 2010. [3] RAYLEIGH L. On the instability of jets[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1878, 10(1):4-13. [4] RAYLEIGH L. Further observations upon liquid jets, in continuation of those recorded in the Royal Society's ‘Proceedings’ for March and May, 1879[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1882, 34:130-145. [5] IBRAHIM E A. Asymmetric instability of a viscous liquid jet[J]. Journal of Colloid and Interface Science, 1997, 189(1):181-183. [6] FUNADA T, JOSEPH D D. Viscous potential flow analysis of capillary instability[J]. International Journal of Multiphase Flow, 2002, 28(9):1459-1478. [7] 严春吉, 解茂昭, 殷佩海. 粘性气体中粘性液体射流分裂与雾化机理研究[J]. 空气动力学学报, 2004, 22(4):422-426. YAN C J, XIE M Z, YIN P H. Mechanisms of breakup and atomization of a viscous liquid jet in a viscous gas[J]. Acta Aerodynamica Sinica, 2004, 22(4):422-426(in Chinese). [8] 杜青, 史绍熙, 刘宁, 等. 液体燃料射流最不稳定频率的理论分析(1)--液体燃料射流的最不稳定频率及无量纲数的影响[J]. 内燃机学报, 2000, 18(3):283-287. DU Q, SHI S X, LIU N, et al. A theoretical analysis of most unstable frequency of a liquid fuel jet breakup(1)-Effects of dimensionless numbers on most unstable frequency[J]. Transactions of CSICE, 2000, 18(3):283-287(in Chinese). [9] LIN S P, LIAN Z W. Mechanisms of the breakup of liquid jets[J]. AIAA Journal, 1990, 28(1):120-126. [10] HARDALUPAS Y, DOMANN R. Breakup model for accelerating liquid jets:AIAA-2004-1155[R]. Reston, VA:AIAA, 2004. [11] AMINI G, IHME M. Liquid jet instability under gravity effects:AIAA-2013-0092[R]. Reston, VA:AIAA, 2013. [12] CHEONG B S, HOWES T. Capillary jet instability under the influence of gravity[J]. Chemical Engineering Science, 2004, 59(11):2145-2157. [13] 严春吉. 可压缩气体中粘性液体射流分裂与雾化机理[J]. 大连理工大学学报, 2008, 48(3):339-343. YAN C J. Breakup and atomization of viscous liquid jets in a compressible gas[J]. Journal of Dalian University of Technology, 2008, 48(3):339-343(in Chinese). [14] 严春吉. 可压缩气体中的三维粘性液体射流雾化机理[J]. 内燃机学报, 2007, 25(4):346-351. YAN C J. Atomization mechanisms of 3-D viscous liquid jets in a compressible gas[J]. Transactions of CSICE, 2007, 25(4):346-351(in Chinese). [15] ZHOU Z W, LIN S P. Effects of compressibility on the atomization of liquid jets[J]. Journal of Propulsion and Power, 1992, 8(4):736-740. [16] ZHOU Z W, LIN S P. Effects of compressiblity on the atomization of liquid jets:AIAA-1992-0459[R]. Reston, VA:AIAA, 1992. [17] FUNADA T, JOSEPH D D, YAMASHITA S. Stability of a liquid jet into incompressible gases and liquids[J]. International Journal of Multiphase Flow, 2004, 30(11):1279-1310. [18] 杜青, 王青, 郭津, 等. 加热条件下液体燃料射流破碎机理的研究[J]. 内燃机学报, 2005, 23(5):423-429. DU Q, WANG Q, GUO J, et al. Study on the mechanism of liquid jet breakup under heating conditions[J]. Transactions of CSICE, 2005, 23(5):423-429(in Chinese). [19] 杜青, 刘宁, 张建新, 等. 液体燃料射流破碎的热不稳定性分析[J]. 燃烧科学与技术, 2005, 11(4):323-328. DU Q, LIU N, ZHANG X J, et al. Analysis of thermal instability for the breakup of liquid jets[J]. Journal of Combustion Science and Technology, 2005, 11(4):323-328(in Chinese). [20] 杜青, 郭津, 包铁成, 等. 实际射流参数对加热条件下液体燃料射流不稳定性的影响[J]. 燃烧科学与技术, 2005, 11(5):421-426. DU Q, GUO J, BAO T C, et al. Effects of injecting parameters on the breakup of liquid jets under heating conditions[J]. Journal of Combustion Science and Technology, 2005, 11(5):421-426(in Chinese). [21] GINEVSKⅡ A F, DMITRIEV A S. Capillary instability of liquid jets in the case of heat exchange with the surrounding medium[J]. Journal of Engineering Physics, 1991, 60(4):403-408. [22] SAROKA M, GUO Y, ASHGRIZ N. Nonlinear instability of an evaporating capillary jet[J]. AIAA Journal, 2001, 39(9):1728-1734. [23] ASHGRIZ N. Handbook of atomization and sprays:Theory and applications[M]. New York:Springer, 2011:3-53. [24] BLAISOT J B, ADELINE S. Determination of the growth rate of instability of low velocity free falling jets[J]. Experiments in Fluids, 2000, 29(3):247-256. [25] BLAISOT J B, ADELINE S. Instabilities on a free falling jet under an internal flow breakup mode regime[J]. International Journal of Multiphase Flow, 2003, 29(4):629-653. [26] DUMOUCHEL C. On the experimental investigation on primary atomization of liquid streams[J]. Experiments in Fluids, 2008, 45(3):371-422. [27] MAYER W O H, BRANAM R. Atomization characteristics on the surface of a round liquid jet[J]. Experiments in Fluids, 2004, 36(4):528-539. [28] SALLAM K A, DAI Z, FAETH G M. Liquid breakup at the surface of turbulent round liquid jets in still gases[J]. International Journal of Multiphase Flow, 2002, 28(3):427-449. [29] BELLAN J. Supercritical (and subcritical) fluid behavior and modeling:Drops, streams, shear and mixing layers, jets and sprays[J]. Progress in Energy and Combustion Science, 2000, 26(4-6):329-366. [30] MAYER W O H, SCHIK A H A, VIELLE B, et al. Atomization and breakup of cryogenic propellants under high-pressure subcritical and supercritical conditions[J]. Journal of Propulsion and Power, 1998, 14(5):835-842. [31] CHEHROUDI B, TALLEY D, COY E. Fractal geometry and growth rate changes of cryogenic jets near the critical point:AIAA-1999-2489[R]. Reston, VA:AIAA, 1999. [32] CHEHROUDI B, TALLEY D. Interaction of acoustic waves with a cryogenic nitrogen jet at sub-and supercritical pressures:AIAA-2002-0342[R]. Reston, VA:AIAA, 2002. [33] CARPENTIER J B, BAILLOT F, BLAISOT J B, et al. Behavior of cylindrical liquid jets evolving in a transverse acoustic field[J]. Physics of Fluids, 2009, 21(2):023601. [34] BAILLOT F, BLAISOT J B, BOISDRON G, et al. Behaviour of an air-assisted jet submitted to a transverse high-frequency acoustic field[J]. Journal of Fluid Mechanics, 2009, 640:305-342. [35] HEISTER S D, RUTZ M W, HILBING J H. Effect of acoustic perturbations on liquid jet atomization[J]. Journal of Propulsion and Power, 1997, 13(1):82-88. [36] HEISTER S D, RUTZ M W, HILBING J H. Effect of acoustic perturbations on liquid jet atomization:AIAA-1995-2425[R]. Reston, VA:AIAA, 1995. [37] SRINIVASAN V, SALAZAR A J, SAITO K. Modeling the disintegration of modulated liquid jets using volume-of-fluid (VOF) methodology[J]. Applied Mathematical Modelling, 2011, 35(8):3710-3730. [38] CHIGIER N. Breakup of liquid sheets and jets:AIAA-1999-3640[R]. Reston, VA:AIAA, 1999. [39] LIU K, SUN D J, YIN X Y. Instability of gas/liquid coaxial jet[J]. Journal of Hydrodynamics, Series B, 2007, 19(5):542-550. [40] 胡国辉. 变密度旋拧射流的线性稳定性分析[J]. 水动力学研究与进展, 2005, 20(5):624-628. HU G H. Linear stability analysis of variable density swirling jets[J]. Journal of Hydrodynamics, Series A, 2005, 20(5):624-628(in Chinese). [41] IBRAHIM E A, KENNY R J, WALKER N B. A computational and experimental investigation of shear coaxial jet atomization:AIAA-2006-5049[R]. Reston, VA:AIAA, 2006. [42] FUNADA T, JOSEPH D D, SAITOH M, et al. Liquid jet in a high Mach number air stream[J]. International Journal of Multiphase Flow, 2006, 32(1):20-50. [43] XIAO F, DIANAT M, MCGUIRK J J. LES of turbulent liquid jet primary breakup in turbulent coaxial air flow[J]. International Journal of Multiphase Flow, 2014, 60(2):103-118. [44] GEORGE C, YANNIS H, ALEX T. A novel technique for measurements of the intact liquid jet core in a coaxial airblast atomizer:AIAA-2007-1337[R]. Reston, VA:AIAA, 2007. [45] STEPHEN A S, STEPHEN D, MALISSA L, et al. Interpretation of core length in shear coaxial rocket injectors from X-ray radiography measurements:AIAA-2014-3790[R]. Reston, VA:AIAA, 2014. [46] MAYER W O H. Coaxial atomization of a round liquid jet in a high speed gas stream:A phenomenological study[J]. Experiments in Fluids, 1994, 16(6):401-410. [47] INOUE C, WATANABE T, HIMENO T, et al. Numerical and experimental study on liquid jet atomization at near-field of coaxial type injector:AIAA-2011-5925[R]. Reston, VA:AIAA, 2011. [48] GAUTAM V, GUPTA A K. Cryogenic flow and atomization from a coaxial injector[J]. Journal of Propulsion and Power, 2009, 25(1):33-39. [49] LIU Z H, LIU Z B. Instability of a viscoelastic liquid jet with axisymmetric and asymmetric disturbances[J]. International Journal of Multiphase Flow, 2008, 34(1):42-60. [50] BRENN G, LIU Z, DURST F. Linear analysis of the temporal instability of axisymmetrical non-Newtonian liquid jets[J]. International Journal of Multiphase Flow, 2000, 26(10):1621-1644. [51] YANG L J, TONG M X, FU Q F. Linear stability analysis of a three-dimensional viscoelastic liquid jet surrounded by a swirling air stream[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 191:1-13. [52] YANG L J, QU Y Y, FU Q F, et al. Linear stability analysis of a slightly viscoelastic liquid jet[J]. Aerospace Science and Technology, 2013, 28(1):249-256. [53] LI F, GAÑÁN-CALVO A M, LÓPEZ-HERRERA J M, et al. Absolute and convective instability of a charged viscoelastic liquid jet[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 196:58-69. [54] CHANG Q, ZHANG M Z, BAI F Q, et al. Instability analysis of a power law liquid jet[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 198:10-17. [55] HARDALUPAS Y, WHITELAW J H. Characteristics of sprays produced by coaxial airblast atomisers[J]. Journal of Propulsion and Power, 1994, 10(4):453-460. [56] HARDALUPAS Y, WHITELAW J H. The characteristics of spray produced by coaxial airblast atomizers:AIAA-1993-0698[R]. Reston, VA:AIAA, 1993. [57] YANG L J, FU Q F. Stability of confined gas-liquid shear flows in recessed shear coaxial injectors[J]. Journal of Propulsion and Power, 2012, 28(6):1413-1424. [58] LIU H F, LI W F, GONG X, et al. Effect of liquid jet diameter on performance of coaxial two-fluid airblast atomizers[J]. Chemical Engineering and Processing:Process Intensification, 2006, 45(4):240-245. [59] HU X, ZHOU J, WANG Z, et al. Experimental studies on atomization and flux distributions of gas-liquid coaxial injectors:AIAA-1996-3023[R]. Reston, VA:AIAA, 1996. [60] GLOGOWSKI M, MICCI M M. Shear coaxial injector spray characterization near the LOx post tip region:AIAA-1995-2552[R]. Reston, VA:AIAA, 1995. [61] 田章福, 吴继平, 陶玉静, 等. 气液同轴式喷嘴雾化特性的试验[J]. 国防科技大学学报, 2006, 28(4):10-13. TIAN Z F, WU J P, TAO Y J, et al. Experimental study on spray characteristic of gas-liquid coaxial injectors[J]. Journal of National University of Defense Technology, 2006, 28(4):10-13(in Chinese). [62] IM J H, KIM D, YOON Y, et al. Self-pulsation characteristics of a swirl coaxial injector with various injection and geometric conditions:AIAA-2005-3749[R]. Reston, VA:AIAA, 2005. [63] NUNOME Y, TAMURA H, ONODERA T, et al. Effect of liquid disintegration on flow instability in a recessed region of a shear coaxial injector:AIAA-2009-5389[R]. Reston, VA:AIAA, 2009. [64] IM J-H, KIM D, HAN P, et al. Self-pulsation characteristics of a gas-liquid swirl coaxial injector[J]. Atomization and Sprays, 2009, 19(1):57-74. [65] IM J-H, YOON Y. The effects of the ambient pressure on self-pulsation characteristics of a gas/liquid swirl coaxial injector:AIAA-2008-4850[R]. Reston, VA:AIAA, 2008. [66] TSOHAS J, HEISTER S D. Numerical simulations of liquid rocket coaxial injector hydrodynamics[J]. Journal of Propulsion and Power, 2011, 27(4):793-810. [67] TSOHAS J, CANINO J V, HEISTER S D. Computational modeling of rocket injector internal flows:AIAA-2007-5571[R]. Reston, VA:AIAA, 2007. [68] TSOHAS J, HEISTER S. CFD simulations of liquid rocket coaxial injector hydrodynamics:AIAA-2009-5387[R]. Reston, VA:AIAA, 2009. [69] TSOHAS J. Hydrodynamics of shear coaxial liquid rocket injectors[D]. West Lafayette, IN:Purdue University, 2009:1-26, 69-89. [70] NUNOME Y, SAKAMOTO H, TAMURA H, et al. An experimental study of super-pulsating flow on a shear coaxial injector with a recessed inner post:AIAA-2007-5560[R]. Reston, VA:AIAA, 2007. [71] KIM B-D, HEISTER S D, COLLICOTT S H. Three-dimensional flow simulations in the recessed region of a coaxial injector[J]. Journal of Propulsion and Power, 2005, 21(4):728-742. [72] KIM B-D, HEISTER S D. Two-phase modeling and hydrodynamic instabilities study of shear coaxial injector flow:AIAA-2002-3696[R]. Reston, VA:AIAA, 2002. [73] KIM B-D, HEISTER S D. Two-phase modeling and hydrodynamic instability in coaxial injectors[J]. Journal of Propulsion and Power, 2004, 20(3):468-479. [74] KIM B-D, HEISTER S. Effect of chamber pressure variation on high-frequency hydrodynamic instability of shear coaxial injector:AIAA-2004-3522[R]. Reston, VA:AIAA, 2004. [75] KIM B-D. Study of hydrodynamic instability of shear coaxial injector flow in a recessed region[D]. West Lafayette, IN:Purdue University, 2002:26-138. [76] MAYER W, TAMURA H. Propellant injection in a liquid oxygen/gaseous hydrogen rocket engine[J]. Journal of Propulsion and Power, 1996, 12(6):1137-1147. [77] LIU T, ZONG N, YANG V. Dynamics of shear-coaxial cryogenic nitrogen jets with acoustic excitation under supercritical conditions:AIAA-2006-0759[R]. Reston, VA:AIAA, 2006. [78] JEFFREY G, IVETT L, JUAN R, et al., On the effect of a transverse acoustic field on a flush shear coaxial injector:AIAA-2009-5142[R]. Reston, VA:AIAA, 2009. [79] CHEHROUDI B, DAVIS D, TALLEY D. Coaxial injection under supercritical conditions:AIAA-2003-1339[R]. Reston, VA:AIAA, 2003. [80] DAVIS D, CHEHROUDI B. The effects of pressure and acoustic field on a cryogenic coaxial jet:AIAA-2004-1330[R]. Reston, VA:AIAA, 2004. [81] DAVIS D, CHEHROUDI B, SORENSON I. Measurements in an acoustically driven coaxial jet under supercritical conditions:AIAA-2005-0736[R]. Reston, VA:AIAA, 2005. [82] DAVIS D, CHEHROUDI B. Shear-coaxial jets from a rocket-like injector in a transverse acoustic field at high pressures:AIAA-2006-0758[R]. Reston, VA:AIAA, 2006. [83] RODRIGUEZ J, GRAHAM J, LEYVA I, et al. Effect of variable phase transverse acoustic fields on coaxial jet forced spread angles:AIAA-2009-0231[R]. Reston, VA:AIAA, 2009. [84] RICHECOEUR F, SCOUFLAIRE P, DUCRUIX S, et al. Interactions between propellant jets and acoustic modes in liquid rocket engines:Experiments and simulations:AIAA-2006-4397[R]. Reston, VA:AIAA, 2006. [85] HARDI J S, MARTINEZ H C G, OSCHWALD M, et al. LOx jet atomization under transverse acoustic oscillations[J]. Journal of Propulsion and Power, 2014, 30(2):337-349. [86] MÉRY Y, HAKIM L, SCOUFLAIRE P,et al. Experimental investigation of cryogenic flame dynamics under transverse acoustic modulations[J]. Comptes Rendus Mécanique, 2013, 341(1-2):100-109. [87] TESHOME S, LEYVA I A, TALLEY D, et al. Cryogenic high-pressure shear-coaxial jets exposed to transverse acoustic forcing:AIAA-2012-1265[R]. Reston, VA:AIAA, 2012. [88] RODRIGUEZ J I, LEYVA I A, GRAHAM J J, et al. Mixing enhancement of liquid rocket engine injector flow:AIAA-2009-5143[R]. Reston, VA:AIAA, 2009. [89] JUNIPER M, TRIPATHI A, SCOUFLAIRE P, et al. Structure of cryogenic flames at elevated pressures[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2000:1103-1109. [90] SINGLA G, SCOUFLAIRE P, ROLON C, et al. Planar laser-induced fluorescence of OH in high-pressure cryogenic LOx/GH2 jet flames[J]. Combustion and Flame, 2006, 144(1-2):151-169. [91] HERDING G, SNYDER R, SCOUFLAIRE P, et al. Flame stabilization in cryogenic propellant combustion[C]//26ht Symposium (International) on Combustion. Pittsburgh, PA:The Combustion Institute, 1996:2041-2047. [92] SINGLA G, SCOUFLAIRE P, ROLON J C, et al. Flame stabilization in high pressure LOx/GH2 and GCH4 combustion[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2007:2215-2222. [93] VAIDYANATHAN A, GUSTAVSSON J P, SEGAL C. Oxygen/hydrogen-planar-laser-induced fluorescence measurements and accuracy investigation in high-pressure combustion[J]. Journal of Propulsion and Power, 2009, 25(4):864-874. [94] KAWASHIMA H, KOBAYASHI K, TOMITA T, et al. A combustion instability phenomenon on a LOx/methane subscale combustor:AIAA-2010-7082[R]. Reston, VA:AIAA, 2010. [95] KENDRICK D, HERDING G, SCOUFLAIRE P, et al. Effects of a recess on cryogenic flame stabilization[J]. Combustion and Flame, 1999, 118(3):327-339. [96] KENDRICK D, HERDING G, SCOUFLAIRE P, et al. Effet du retrait sur la stabilisation des flammes cryotechniques[J]. Comptes Rendus de I'Académie des Sciences-Series ⅡB-Mechanics-Physics-Chemistry-Astronomy, 1998, 326(2):111-116. [97] LUX J, HAIDN O. Effect of recess in high-pressure liquid oxygen/methane coaxial injection and combustion[J]. Journal of Propulsion and Power, 2009, 25(1):24-33. [98] NUNOME Y, ONODERA T, SASAKI M, et al. Combustion instability phenomena observed during cryogenic hydrogen injection temperature ramping tests for single coaxial injector elements:AIAA-2011-6027[R]. Reston, VA:AIAA, 2011. [99] SINGLA G, SCOUFLAIRE P, ROLON C, et al. Transcritical oxygen/transcritical or supercritical methane combustion[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2005:2921-2928. [100] LOCKE J M, PAL S, WOODWARD R D, et al. High speed visualization of LOx/GH2 rocket injector flowfield:Hot-fire and cold-flow experiments:AIAA-2010-7145[R]. Reston, VA:AIAA, 2010. [101] NICOLA I, ALESSANDRO C, CLAUDIO B. Mixing and combustion in supercritical O2/CH4 liquid rocket injectors:AIAA-2004-1163[R]. Reston, VA:AIAA, 2004. [102] DE GIORGI M G, LEUZZI A. CFD simulation of mixing and combustion in LOx/CH4 spray under supercritical conditions:AIAA-2009-4038[R]. Reston, VA:AIAA, 2009. [103] MATSUYAMA S, SHINJO J, OGAWA S, et al. Large eddy simulation of LOx/GH2 shear-coaxial jet flame at supercritical pressure:AIAA-2010-0208[R]. Reston, VA:AIAA, 2010. [104] MATSUYAMA S, SHINJO J, OGAWA S, et al. Large eddy simulation of high-frequency combustion instability of supercritical LOx/GH2 flame:AIAA-2010-6567[R]. Reston, VA:AIAA, 2010. [105] ZONG N, YANG V. Supercritical LOx/methane flame stabilization and dynamics of a shear coaxial injector:AIAA-2006-0760[R]. Reston, VA:AIAA, 2006. [106] ZONG N, GUILLAUME R, YANG V. A flamelet approach for modeling of (LOx)/methane flames at supercritical pressures:AIAA-2008-0946[R]. Reston, VA:AIAA, 2008. [107] RUIZ A, CUENOT B, SELLE L, et al. The flame structure of a turbulent supercritical hydrogen/oxygen flow behind a splitter plate:AIAA-2011-6121[R]. Reston, VA:AIAA, 2011. [108] OEFELEIN J C. Thermophysical characteristics of shear-coaxial LOx-H2 flames at supercritical pressure[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2005:2929-2937. [109] FENG S J, NIE W S, HE B, et al. Three-dimensional numerical simulations of low frequency combustion instability in a LOx/methane rocket engine:AIAA-2010-8776[R]. Reston, VA:AIAA, 2010. [110] 袁磊. 氢/氧发动机变工况燃烧特性及其燃烧稳定性研究[D]. 长沙:国防科技大学, 2013:61-85. YUAN L. Research on changing operation combustion characteristics and combustion stabilities of hydrogen/oxygen engine[D]. Changsha:National University of Defense Technology, 2013:61-85(in Chinese). [111] MATSUYAMA S, SHINJO J, MIZOBUCHI Y. LES of high-frequency combustion instability in a rocket combustor:AIAA-2013-0564[R]. Reston, VA:AIAA, 2013. [112] MATSUYAMA S, SHINJO J, OGAWA S, et al. LES of high-frequency combustion instability in a single element rocket combustor:AIAA-2012-1271[R]. Reston, VA:AIAA, 2012. [113] RICHMAN B M. On the method of combustion instability mode determination in a sylindrical chamber and usage with experimental data[D]. Huntsville, AL:The University of Alabama, 2011:31-32. [114] YI T, SANTAVICCA D A. Forced flame response of turbulent liquid-fueled lean-direct-injection combustion to fuel modulations[J]. Journal of Propulsion and Power, 2009, 25(6):1259-1271. [115] BIRBAUD A L, DUROX D, CANDEL S. Upstream flow dynamics of a laminar premixed conical flame submitted to acoustic modulations[J]. Combustion and Flame, 2006, 146(3):541-552. [116] DUROX D, SCHULLER T, CANDEL S. Combustion dynamics of inverted conical flames[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2005:1717-1724. [117] CHAUDHURI S, CETEGEN B M. Response dynamics of bluff-body stabilized conical premixed turbulent flames with spatial mixture gradients[J]. Combustion and Flame, 2009, 156(3):706-720. [118] CHAUDHURI S, CETEGEN B M. Blowoff characteristics of bluff-body stabilized conical premixed flames with upstream spatial mixture gradients and velocity oscillations[J]. Combustion and Flame, 2008, 153(4):616-633. [119] BIRBAUD A L, DUROX D, DUCRUIX S, et al. Dynamics of confined premixed flames submitted to upstream acoustic modulations[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2007:1257-1265. [120] CHAPARRO A A, CETEGEN B M. Blowoff characteristics of bluff-body stabilized conical premixed flames under upstream velocity modulation[J]. Combustion and Flame, 2006, 144(1-2):318-335. [121] PALIES P, DUROX D, SCHULLER T, et al. Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames[J]. Combustion and Flame, 2011, 158(10):1980-1991. [122] PALIES P, DUROX D, SCHULLER T, et al. The combined dynamics of swirler and turbulent premixed swirling flames[J]. Combustion and Flame, 2010, 157(9):1698-1717. [123] PALIES P, DUROX D, SCHULLER T, et al. Dynamics of premixed confined swirling flames[J]. Comptes Rendus Mécanique, 2009, 337(6-7):395-405. [124] THUMULURU S K, LIEUWEN T. Characterization of acoustically forced swirl flame dynamics[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2009:2893-2900. [125] HARDI J S, SCOTT B, MICHAEL O, et al. Coupling behaviour of LOx/H2 flames to longitudinal and transverse acoustic instabilities:AIAA-2012-4087[R]. Reston, VA:AIAA, 2012. [126] LI Q, CHENG P, KANG Z, et al. Extreme fuel-rich combustion characteristics of RBCC embedded rocket engine with gas-liquid shear coaxial injectors in continuously varying mixture ratios[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(4):736-746. [127] RICHECOEUR F. Experimentations and simulations numeric on interaction modes acoustic transve at flames cryotechniques[D]. Paris:Ecole Centrale Paris, 2006:68-95. [128] RICHECOEUR F, DUCRUIX S, SCOUFLAIRE P, et al. Experimental investigation of high-frequency combustion instabilities in liquid rocket engine[J]. Acta Astronautica, 2008, 62(1):18-27. [129] RICHECOEUR F, DUCRUIX S, SCOUFLAIRE P, et al. Effect of temperature fluctuations on high frequency acoustic coupling[C]//Proceedings of the Combustion Institute. Pittsburgh, PA:The Combustion Institute, 2009:1663-1670. [130] DAVID J F, ALIREZA B, JEFFREY W, et al. The response of cryogenic H2/O2 coaxial jet flames to acoustic disturbances:AIAA-2015-1607[R]. Reston, VA:AIAA, 2015. |
[1] | Ziguang LI, Peng CHENG, Qinglian LI, Xiao BAI, Pengjin CAO. Influence of backpressure on spray distribution characteristics of a gas-liquid pintle injector element [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128614-128614. |
[2] | Meng DONG, Yonghua TAN, Chuang HE, Lixiang XING, Ruiguo ZHAO. Hydraulic excitation experiment on frequency characteristic of simulated feed system after pump in a rocket engine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 127419-127419. |
[3] | Le XIANG, Kaifu XU, Hui CHEN, Suibo LI, Kai ZHANG, Shixin LIU. Experimental studies on cavitating flow for liquid rocket engine cryogenic turbopump: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 27131-027131. |
[4] | Zehao CHEN, Hui CHEN, Yushan GAO, Hang ZHANG. Review and prospect of model-based fault diagnosis technology for liquid rocket engines [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 629016-629016. |
[5] | Xiaopu ZHANG, Feng REN, Pengli XU, Zhimin LI, Caihong SU. Selection method of measuring parameters for rocket engine based on fault recognition [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 128522-128522. |
[6] | Peiqing LIU, Chenhui GE, Qiulin QU. Review of aircraft-generated spray and atomization during take-off and landing on a water-contaminated runway [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528911-528911. |
[7] | Weidong LIU, Haoyang PENG, Shijie LIU, Hailong ZHANG, Xueqiang YUAN. Research Progresses of rotating detonation combustion and its application [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528875-528875. |
[8] | Jianjun WU, Zejun HU, Zhicheng HE, Yu ZHANG, Yang OU, Zhengxue MA, Qinhui PENG, Yuxuan ZHONG. Research progress of electrically controlled solid propulsion technology [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528716-528716. |
[9] | Xiaofeng SUN, Guangyu ZHANG, Xiaoyu WANG, Lei LI, Xiangyang DENG, Ronghui CHENG. Research progress in aero-engine combustion instability prediction and control [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628733-628733. |
[10] | Tao CHEN, Xingping XU, Hongda ZHANG, Xingsi HAN. Numerical simulation of combustion instability by SATES coupling with FGM combustion model [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628207-628207. |
[11] | Dahua DU, Bin LI. Key structural dynamic design technologies in liquid rocket engines: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 27554-027554. |
[12] | WANG Guangxu, TAN Yonghua, ZHUANG Fengchen, CHEN Jianhua, YANG Bao'e, HONG Liu. Suppression effect of injection intensity distribution on longitudinal combustion instability [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 126018-126018. |
[13] | LIANG Tao, CUI Peng, CHENG Peng, LI Qinglian, ZHANG Bin, SONG Jie. Influence of pressure ratio on evolution of cavitation dynamic process in Venturi tube [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 125212-125212. |
[14] | CUI Peng, SONG Jie, LI Qinglian, CHEN Lanwei, LIANG Tao, SUN Jun. Dynamic modeling and simulation analysis of LOX/RP1 variable thrust engines using motor pump: Part I-single condition analysis [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 124884-124884. |
[15] | ZHANG Lei, YU Jinlu, CHEN Yi, HU Changhuai, JIANG Yongjian, TIAN Yu. Spray characteristics of gliding arc discharge combustion dome of areo-engine combustors [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 124308-124308. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341