ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (S2): 8-22.doi: 10.7527/S1000-6893.2022.27700
Previous Articles Next Articles
Yifeng HUANG, Shuhua ZENG, Zhongzheng JIANG(), Weifang CHEN
Received:
2022-06-29
Revised:
2022-07-27
Accepted:
2022-08-26
Online:
2022-12-25
Published:
2022-08-31
Contact:
Zhongzheng JIANG
E-mail:jzhongzh@zju.edu.cn
Supported by:
CLC Number:
Yifeng HUANG, Shuhua ZENG, Zhongzheng JIANG, Weifang CHEN. Numerical study on high-altitude lateral jet based on nonlinear coupled constitutive relation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 8-22.
1 | TARTABINI P, WILMOTH R, RAULT D. A systems approach to a DSMC calculation of a control jet interaction experiment[C]∥ 28th Thermophysics Conference. Reston: AIAA, 1993: 2798. |
2 | GLASS C E. Numerically simulating an expanding continuum jet into a surrounding non-continuum region[M].Washington, D.C.: NASA, 2018. |
3 | 陈伟芳, 吴明巧, 任兵. DSMC/EPSM混合算法研究[J]. 计算力学学报, 2003, 20(3): 274-278. |
CHEN W F, WU M Q, REN B. On study of hybrid DSMC/EPSM method[J]. Chinese Journal of Computational Mechanics, 2003, 20(3): 274-278 (in Chinese). | |
4 | BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford: Clarendon Press, 1994 |
5 | EU B C. Relativistic kinetic theory for matter[M]∥Kinetic theory of nonequilibrium ensembles, irreversible thermodynamics, and generalized hydrodynamics. Cham: Springer International Publishing, 2016: 1-95. |
6 | EU B C. Kinetic theory and irreversible thermodynamics[M]. New York: J. Wiley, 1992 |
7 | 肖洪, 商雨禾, 吴迪, 等. 稀薄气体动力学的非线性耦合本构方程理论及验证[J]. 航空学报, 2015, 36(7): 2091-2104. |
XIAO H, SHANG Y H, WU D, et al. Nonlinear coupled constitutive relations and its validation for rarefied gas flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2091-2104 (in Chinese). | |
8 | JIANG Z Z, ZHAO W W, CHEN W F, et al. Eu's generalized hydrodynamics with its derived constitutive model: Comparison to Grad's method and linear stability analysis[J]. Physics of Fluids, 2021, 33(12): 127116. |
9 | JIANG Z Z, ZHAO W W, YUAN Z Y, et al. Computation of hypersonic flows over flying configurations using a nonlinear constitutive model[J]. AIAA Journal, 2019, 57(12): 5252-5268. |
10 | JIANG Z, ZHAO W, CHEN W, et al. Computation of shock wave structure using a simpler set of generalized hydrodynamic equations based on nonlinear coupled constitutive relations[J]. Shock Waves, 2019, 29(8): 1227-1239. |
11 | 江中正, 赵文文, 袁震宇, 等. 基于非线性耦合本构关系的改进边界条件[J]. 航空学报, 2018, 39(10): 122057. |
JIANG Z Z, ZHAO W W, YUAN Z Y, et al. An enhanced wall-boundary condition based on nonlinear coupled constitutive relations[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 122057 (in Chinese). | |
12 | 江中正. 稀薄气体流动非线性耦合本构关系模型理论与数值研究[D]. 杭州: 浙江大学, 2019. |
JIANG Z Z. Theoretical and numerical investigations of nonlinear coupled constitutive relation model in rarefied gas flows[D]. Hangzhou: Zhejiang University, 2019 (in Chinese). | |
13 | JIANG Z Z, CHEN W F, ZHAO W W. Numerical analysis of the micro-Couette flow using a non-Newton-Fourier model with enhanced wall boundary conditions[J]. Microfluidics and Nanofluidics, 2018, 22(1): 10. |
14 | YUAN Z Y, ZHAO W W, JIANG Z Z, et al. Numerical simulation of hypersonic reaction flows with nonlinear coupled constitutive relations[J]. Aerospace Science and Technology, 2021, 112: 106591. |
15 | HE Z Q, JIANG Z Z, ZHANG H W, et al. Analytical method of nonlinear coupled constitutive relations for rarefied non-equilibrium flows[J]. Chinese Journal of Aeronautics, 2021, 34(2): 136-153. |
16 | 王振. 非线性耦合本构方程的计算方法与验证[D]. 杭州: 浙江大学, 2020. |
WANG Z. Calculation method and verification of nonlinear coupled constitutive equations[D]. Hangzhou: Zhejiang University, 2020 (in Chinese). | |
17 | 吴忧, 徐旭, 陈兵, 等. 高马赫数下横/逆向喷流干扰流场数值研究[J]. 航空学报, 2021, 42(S1): 726359. |
WU Y, XU X, CHEN B, et al. Numerical study on transverse/opposing jet interaction flowfield under high Mach number[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726359 (in Chinese). | |
18 | 王泽江, 李杰, 曾学军, 等. 逆向喷流对双锥导弹外形减阻特性的影响[J]. 航空学报, 2020, 41(12): 124116. |
WANG Z J, LI J, ZENG X J, et al. Effect of opposing jet on drag reduction characteristics of double-cone missile shape[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124116 (in Chinese). | |
19 | CURTISS C F. The classical Boltzmann equation of a gas of diatomic molecules[J]. Journal of Chemical Physics, 1981, 75: 376-378. |
20 | BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525. |
21 | EU B C, OHR Y G. Generalized hydrodynamics, bulk viscosity, and sound wave absorption and dispersion in dilute rigid molecular gases[J]. Physics of Fluids, 2001, 13(3): 744-753. |
22 | GRAD H. Asymptotic theory of the boltzmann equation[J]. The Physics of Fluids, 1963, 6(2): 147-181. |
23 | LEVERMORE C D. Moment closure hierarchies for kinetic theories[J]. Journal of Statistical Physics, 1996, 83: 5-6. |
24 | TORRILHON M, STRUCHTRUP H. Regularized 13-moment equations: Shock structure calculations and comparison to Burnett models[J]. Journal of Fluid Mechanics, 2004, 513: 171-198. |
25 | AL-GHOUL M, EU B. Generalized hydrodynamics and shock waves[J]. Physical Review E, 1997, 56(3): 2981-2992. |
26 | EU B C. The modified moment method, irreversible thermodynamics, and the nonlinear viscosity of a dense fluid[J]. Journal of Chemical Physics, 1981, 74: 6362-6372. |
27 | MYONG R S. Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows[J]. Physics of Fluids, 1999, 11(9): 2788-2802. |
28 | MYONG R S. A computational method for Eu's generalized hydrodynamic equations of rarefied and microscale gasdynamics[J]. Journal of Computational Physics, 2001, 168(1): 47-72. |
29 | MYONG R S. A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows[J]. Journal of Computational Physics, 2004, 195(2): 655-676. |
30 | MAXWELL J C. On stresses in rarified gases arising from inequalities of temperature[J]. Philosophical Transactions of the Royal Society of London, 1879, 170: 231-256. |
31 | 陈坚强, 张益荣, 郭勇颜. 高超声速流动数值模拟方法及应用[M]. 北京: 科学出版社, 2019: 153-154. |
CHEN J Q, ZHANG Y R, GUO Y Y. Numerical simulation method of hypersonic flow and its application[M]. Beijing: Science Press, 2019: 153-154 (in Chinese). | |
32 | OSHER S. Convergence of generalized MUSCL schemes[J]. SIAM Journal on Numerical Analysis, 1985, 22(5): 947-961. |
33 | KIM K H, KIM C, RHO O H. Methods for the accurate computations of hypersonic flows[J]. Journal of Computational Physics, 2001, 174(1): 38-80. |
34 | YOON S, JAMESON A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9): 1025-1026. |
35 | MYONG R S. A full analytical solution for the force-driven compressible Poiseuille gas flow based on a nonlinear coupled constitutive relation[J]. Physics of Fluids, 2011, 23(1): 012002. |
36 | LE N T P, XIAO H, MYONG R S. A triangular discontinuous Galerkin method for non-Newtonian implicit constitutive models of rarefied and microscale gases[J]. Journal of Computational Physics, 2014, 273: 160-184. |
37 | JIANG Z Z. An undecomposed hybrid algorithm for nonlinear coupled constitutive relations of rarefied gas dynamics[J]. Communications in Computational Physics, 2019, 26(3): 880-912. |
38 | BIRD G A, GALLIS M A, TORCZYNSKI J R, et al. Accuracy and efficiency of the sophisticated direct simulation Monte Carlo algorithm for simulating noncontinuum gas flows[J]. Physics of Fluids, 2009, 21(1): 017103. |
39 | 张庆虎. 超声速流动分离及其控制的试验研究[D]. 长沙: 国防科学技术大学, 2013. |
ZHANG Q H. Experimental investigation of supersonic flow separation and its micro-ramp control[D]. Changsha: National University of Defense Technology, 2013 (in Chinese). | |
40 | 李季. 高温非平衡效应下的激波干扰与激波反射[D]. 合肥: 中国科学技术大学, 2015. |
LI J. On shock interactions and reflections with high temperature non-equilibrium effects[D]. Hefei: University of Science and Technology of China, 2015 (in Chinese). |
[1] | Weihong ZHANG, Han ZHOU, Shaoying LI, Jihong ZHU, Lu ZHOU. Material⁃structure integrated design for high⁃performance aerospace thin⁃walled component [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 627428-627428. |
[2] | Chongli MA, Jingyuan LIU. Effect of grid strategy on numerical simulation results of aerothermal heating loads over hypersonic blunt bodies [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126710-126710. |
[3] | Bin LIU, Jing XU, Meiling HUO, Xueying CUI, Xiufeng XIE, Donghui YANG, Jia WANG. Remaining useful life prediction based on multi-scale adaptive attention network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 226918-226918. |
[4] | Xiaoqian CHEN, Yong ZHAO, Senlin HUO, Zeyu ZHANG, Bingxiao DU. A review of topology optimization design methods for multi-scale structures [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528863-528863. |
[5] | Bo DING, Zhenli CHEN, Zihan JIAO, Jincheng WANG, Zheng LI, Guanghui BAI. Unsteady control mechanisms of hypersonic compression corner using pulsed surface arc discharge [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(12): 127744-127744. |
[6] | Yuanliang XUE, Guodong JIN, Lining TAN, Jiankun XU. Adaptive UAV target tracking algorithm based on multi-scale fusion [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 326107-326107. |
[7] | HAN Songyu, SHAO Haidong, JIANG Hongkai, ZHANG Xiaoyang. Intelligent fault diagnosis of aero-engine high-speed bearings using enhanced CNN [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 625479-625479. |
[8] | TIAN Jing, ZHANG Yuwei, ZHANG Fengling, AI Xinping, GAO Chong. Inter-shaft bearing fault diagnosis method based on multi-scale quantum entropy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 625485-625485. |
[9] | LIU Fang, HAN Xiao. Adaptive aerial object detection based on multi-scale deep learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 325270-325270. |
[10] | LIU Pengxin, YUAN Xianxu, SUN Dong, FU Yalu, LI Chen. Direct numerical simulation of high-temperature turbulent boundary layer with chemical nonequilibrium [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 124877-124877. |
[11] | REN Weijie, XIE Wenjia, TIAN Zhengyu, ZHANG Ye, YU Hang. Grid dependence of hypersonic numerical shock instability [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(S1): 726376-726376. |
[12] | XIANG Xinghao, ZHANG Yifeng, YUAN Xianxu, TU Guohua, WAN Bingbing, CHEN Jianqiang. C-γ-Reθ model for hypersonic three-dimensional boundary layer transition prediction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(9): 625711-625711. |
[13] | WU Han, WANG Jianhong, HUANG Wei, DU Zhaobo, YAN Li. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 25371-025371. |
[14] | ZHAO Chenwei, MAO Junkui, TU Zecan, QIU Penglin. Thermal analysis methods for high-temperature ceramic matrix composite components: Review and prospect [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 24126-024126. |
[15] | NI Weiyu, ZHANG Heng, YAO Shengwei. Concurrent topology optimization of composite structures for considering structural damping [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 224807-224807. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 192
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 505
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341