[1] 张烁, 刘治汶. 航空发动机轴承故障结构化贝叶斯稀疏表示[J/OL]. 航空学报(2021-04-29)[2021-06-16]. http://kns.cnki.net/kcms/detail/11.1929.V.20210429.1116.006.html/doi/10.10.7527/S1000-6893.2021.25056. ZHANG S, LIU Z W. Structural Bayesian sparse representation of aero-engine bearing failures[J/OL]. Acta Aeronautica et Astronautica Sinica(2021-04-29)[2021-06-16].http://kns.cnki.net/kcms/detail/11.1929.V.20210429.1116.006.html/doi/10.10.7527/S1000-6893.2021.25056. [2] 张忠强, 张新, 王家序, 等. 基于重加权谱峭度方法的航空发动机故障诊断[J/OL]. 航空学报(2021-05-20)[2021-06-16].http://kns.cnki.net/kcms/detail/11.1929.V.20210520.1001.020.html/doi/10.10.7527/S1000-6893.2021.25445. ZHANG Z Q, ZHANG X, WANG J X, et al. Reweighted kurtogram for aero-engine fault diagnosis[J/OL]. Acta Aeronautica et Astronautica Sinica(2021-05-20)[2021-06-16].http://kns.cnki.net/kcms/detail/11.1929.V.20210520.1001.020.html/doi/10.10.7527/S1000-6893.2021.25445. [3] RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology Heart & Circulatory Physiology, 2000, 278(6): 2039-2049. [4] 赵志宏, 杨绍普. 一种基于样本熵的轴承故障诊断方法[J]. 振动与冲击, 2012, 31(6): 136-140. ZHAO Z H, YANG S P. Sample entropy-based roller bearing fault diagnosis method[J]. Journal of Vibration and Shock, 2012, 31(6): 136-140 (in Chinese). [5] COSTA M, GOLDGERGER A L, PENG C K. Multiscale entropy analysis of complex physiologic time series[J]. Physical Review Letters, 2007, 89(6): 705-708. [6] 郑近德, 程军圣, 杨宇. 基于多尺度熵的滚动轴承故障诊断方法[J]. 湖南大学学报(自然科学版), 2012, 39(5): 38-41. ZHENG J D, CHENG J S, YANG Y. A rolling bearing fault diagnosis approach based on multiscale entropy[J]. Journal of Hunan University (Natural Science Edition), 2012, 39(5): 38-41 (in Chinese). [7] BANDT C, POMPE B. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 2002, 88(17): 174102. [8] YAN R, GAO R X. Approximate entropy as a diagnostic tool for machine health monitoring[J]. Mechanical Systems and Signal Processing, 2007, 21: 824-839. [9] AZIZ W, ARIF M. Multiscale permutation entropy of physiological time series[C]//International Multi-topic Conference, 2005. [10] 李永波. 滚动轴承故障特征提取与早期诊断方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. LI Y B. Investigation on fault feature extraction and early diagnosis for rolling bearings[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese). [11] 谢可夫, 许悟生. 基于量子理论的图像中值滤波[J]. 计算机工程, 2013, 39(1): 244-247. XIE K F, XU W S. Image median filtering based on quantum theory[J]. Computer Engineering, 2013, 39(1): 244-247 (in Chinese). [12] 谢可夫, 罗安. 量子启发数学形态学的研究[J]. 电子学报, 2005(2): 284-287. XIE K F, LUO A. Research on quantum-inspired mathematical morphology[J]. Acta Electronica Sinica, 2005(2): 284-287 (in Chinese). [13] 田晶, 艾延廷, 赵明, 等. 基于声发射信号信息距的滚动轴承故障诊断[J]. 航空动力学报, 2017, 32(1): 148-154. TIAN J, AI Y T, ZHAO M, et al. Fault diagnosis for rolling element bearings based on information exergy distance of acoustic emission signal[J]. Journal of Aerospace Power, 2017, 32(1): 148-154 (in Chinese). [14] 田晶, 王英杰, 王志, 等. 基于EEMD与空域相关降噪的滚动轴承故障诊断方法[J]. 仪器仪表学报, 2018, 39(7): 144-151. TIAN J, WANG Y J, WANG Z, et al. Fault diagnosis for rolling bearing based on EEMD and spatial correlation denoising[J]. Journal of Instrumentation, 2018, 39(7): 144-151 (in Chinese). [15] 胡渴望, 吴根水, 屠宁, 等. 改进小波空域相关去噪算法的飞行数据滤波[J]. 电子设计工程, 2015, 23(20): 34-37. HU K W, WU G S, TU N, et al. Flight data de-noising using an improved adaptive wavelet spatial correlation algorithm[J]. Electronic Design Engineering, 2015, 23(20): 34-37 (in Chinese). [16] WITKIM A P. Scale-space filtering[C]//Proceeding of the Eighth International Joint Conference on Artificial Intelligence,1983: 180-191. [17] XU Y, WEAVER J B, HEALY D M, et al. Wavelet transform domain filters: A spatially selective noise filtration technique[J]. IEEE transactions on Image Processing, 1994, 3(6): 747-758. [18] 张晓星, 周君杰, 李楠, 等. 抑制局部放电白噪声的分块阈值空域相关联合去噪法[J]. 高电压技术, 2011, 37(5): 1142-1148. ZHANG X X, ZHOU J J, LI N, et al. Block theresholding spatial combined de-noising method for suppress white-noise interference in PD signals[J]. High voltage technology, 2011, 37(5): 1142-1148 (in Chinese). [19] 苏哲, 许录平, 王勇, 等. 改进小波空域相关滤波的脉冲星微弱信号降噪[J]. 系统工程与电子技术, 2010, 32(12): 2500-2505. SU Z, XU L P, WANG Y, et al. Pulsar weak signal denoising based on improved wavelet spatial correlation filtering[J]. Systems Engineering and Electronics, 2010, 32(12): 2500-2505 (in Chinese). [20] LI X G, JIA G H, LI J F, et al. A face hallucination algorithm via an LLE coefficients prior model[J]. Chinese Journal of Electronics, 2018, 27(6): 1234-1240. [21] 徐建军, 杜蔷楠, 薛国华. WPT-MSE结合PNN的电机轴承故障诊断方法[J]. 自动化仪表, 2017, 38(4): 85-89. XU J J, DU Q N, XUE G H. Wind motor bearing fault diagnosis based on WPT-MSE and PNN[J]. Process Automation Instrumentation, 2017, 38(4): 85-89 (in Chinese). [22] FUSIELLO A, TRUCCO E, VERRI A. A compact algorithm for rectification of stereo pairs[J]. Machine Vision and Applications, 2000, 12(1): 16-22. [23] YANG Y T, ZHENG H L, YIN J C, et al. Refined composite multivariate multiscale symbolic dynamic entropy and its application to fault diagnosis of rotating machine[J]. Measurement, 2020, 151: 107233. [24] LI Y B, LI G Y, YANG Y T, et al. A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy[J]. Mechanical Systems and Signal Processing, 2018, 105: 319-337. |