[1] SOUVEREIN L J, DUPONT P, DEBIÉVE J F, et al. Effect of interaction strength on unsteadiness in shock-wave-induced separations[J]. AIAA Journal, 2010, 48(7): 1480-1493. [2] BISEK N J, POGGIE J, NISHIHARA M, et al. Hypersonic flow over a cylinder with a nanosecond pulse electrical discharge[J]. Journal of Thermophysics and Heat Transfer, 2014, 28(1): 18-26. [3] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405(in Chinese). [4] BIANCHI G, SARACOGLU B H, PANIAGUA G, et al. Experimental analysis on the effects of DC arc discharges at various flow regimes[J]. Physics of Fluids, 2015, 27(3): 036102. [5] OSUKA T, ERDEM E, HASEGAWA N, et al. Laser energy deposition effectiveness on shock-wave boundary-layer interactions over cylinder-flare combinations[J]. Physics of Fluids, 2014, 26(9): 096103. [6] RUSSELL A, ZARE-BEHTASH H, KONTIS K. Joule heating flow control methods for high-speed flows[J]. Journal of Electrostatics, 2016, 80: 34-68. [7] SHNEIDER M N, MACHERET S O, ZAIDI S H, et al. Virtual shapes in supersonic flow control with energy addition[J]. Journal of Propulsion and Power, 2008, 24(5): 900-915. [8] FALEMPIN F, FIRSOV A A, YARANTSEV D A, et al. Plasma control of shock wave configuration in off-design mode of M=2 inlet[J]. Experiments in Fluids, 2015, 56(3): 1-10. [9] ZONG H H, KOTSONIS M. Experimental investigation on frequency characteristics of plasma synthetic jets[J]. Physics of Fluids, 2017, 29(11): 115107. [10] WANG H Y, LI J, JIN D, et al. Manipulation of ramp-induced shock wave/boundary layer interaction using a transverse plasma jet array[J]. International Journal of Heat and Fluid Flow, 2017, 67: 133-137. [11] WANG H Y, LI J, JIN D, et al. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation[J]. Acta Astronautica, 2018, 142: 45-56. [12] HOUPT A, GORDEYEV S, JULIANO T J, et al. Optical measurement of transient plasma impact on corner separation in M=4.5 airflow[C]//54th AIAA Aerospace Sciences Meeting. Reston, VA: AIAA, 2016. [13] UTKIN Y G, KESHAV S, KIM J H, et al. Development and use of localized arc filament plasma actuators for high-speed flow control[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 685-694. [14] KAZANSKY P, MORALEV I, FIRSOV A A, et al. Experimental study of vorticity generation with pair of counter-moving pulsed arcs[C]//AIAA Scitech 2019 Forum. Reston, VA: AIAA, 2019. [15] AZAROVA O A, KNIGHT D D. Interaction of microwave and laser discharge resulting "heat spots" with supersonic combined cylinder bodies[J]. Aerospace Science and Technology, 2015, 43: 343-349. [16] TAMBA T, PHAM H S, SHODA T, et al. Frequency modulation in shock wave-boundary layer interaction by repetitive-pulse laser energy deposition[J]. Physics of Fluids, 2015, 27(9): 091704. [17] EMERICK T, ALI M Y, FOSTER C, et al. SparkJet characterizations in quiescent and supersonic flowfields[J]. Experiments in Fluids, 2014, 55(12): 1-21. [18] ZONG H H, CUI W, WU Y, et al. Influence of capacitor energy on performance of a three-electrode plasma synthetic jet actuator[J]. Sensors and Actuators A: Physical, 2015, 222: 114-121. [19] ZHOU Y, XIA Z X, LUO Z B, et al. Effect of three-electrode plasma synthetic jet actuator on shock wave control[J]. Science China Technological Sciences, 2017, 60(1): 146-152. [20] WANG H Y, LI J, JIN D, et al. Effect of a transverse plasma jet on a shock wave induced by a ramp[J]. Chinese Journal of Aeronautics, 2017, 30(6): 1854-1865. [21] NARAYANASWAMY V, RAJA L L, CLEMENS N T. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator[J]. Physics of Fluids, 2012, 24(7): 076101. [22] NARAYANASWAMY V, RAJA L L, CLEMENS N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control[J]. AIAA Journal, 2010, 48(2): 297-305. [23] TANG M X, WU Y, GUO S G, et al. Effect of the streamwise pulsed arc discharge array on shock wave/boundary layer interaction control[J]. Physics of Fluids, 2020, 32(7): 076104. [24] CHAGANTI N, KURUP A, OLCMEN S. Study of unsteadiness of shock wave boundary layer interaction using Rainbow Schlieren Deflectometry and Proper Orthogonal Decomposition[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, VA: AIAA, 2013. [25] SCHMID P J. Application of the dynamic mode decomposition to experimental data[J]. Experiments in Fluids, 2011, 50(4): 1123-1130. |