[1] XUE X P,WEN C Y.Review of unsteady aerodynamics of supersonic parachutes[J].Progress in Aerospace Sciences,2021,125:100728. [2] CRUZ J R, WAY D, SHIDNER J, et al. Reconstruction of the Mars science laboratory parachute performance and comparison to the descent simulation[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston:AIAA, 2013. [3] SENGUPTA A, WITKOWSKI A, ROWAN J, et al. Overview of the Mars science laboratory parachute de-celerator system[C]//19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston:AIAA, 2007. [4] CLARK I G, RIVELLINI T, ADLER M. Development and testing of a new family of low-density supersonic decelerators[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston:AIAA, 2013. [5] GALLON J, WITKOWSKI A, CLARK I G, et al. Low density supersonic decelerator parachute decelerator system[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston:AIAA, 2013. [6] CLARK I G, GALLON J C, WITKOWSKI A. Para-chute decelerator system performance during the low density supersonic decelerator program's first supersonic flight dynamics test[C]//23rd AIAA Aerodynamic Decel-erator Systems Technology Conference. Reston:AIAA, 2015. [7] GOGLIA M J, LAVIER H W S, BROWN C D. Air permeability of parachute gloths[J]. Textile Research Journal, 1955, 25(4):296-313. [8] LINGARD J, UNDERWOOD J. The effects of low density atmospheres on the aerodynamic coefficients of parachutes[C]//13th Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 1995. [9] RONDEAU N C, DESABRAIS K J, CHARETTE C, et al. Investigation of parachute fabric permeability under cyclic loading[C]//23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2015:522-542. [10] HEINRICH H, HAAK E. Stability and drag of para-chutes with varying effective porosity:TR AFFDL-TR-71-58[R]. Dayton:Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, 1971. [11] ZUMWALT C, CRUZ J, O'FARRELL C, et al. Wind tunnel test of subscale ringsail and disk-gap-band para-chutes[C]//34th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2016. [12] CRUZ J R, WAY D, SHIDNER J, et al. Parachute models used in the Mars science laboratory entry, descent, and landing simulation[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston:AIAA, 2013. [13] CRUZ J R, SNYDER M L. Estimates for the aerodynamic coefficients of ringsail and disk-gap-band parachutes operating on Mars[C]//24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2017. [14] CRUZ J R, O'FARRELL C, HENNINGS E, et al. Permeability of two parachute fabrics-measurements, modeling, and application[C]//24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA,2017. [15] TAGUCHI M, SEMBA N, MORI K. Effects of flexibility and gas permeability of fabric to supersonic performance of flexible parachute[C]//23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2015. [16] 贾贺, 荣伟, 陈国良. 基于LS-DYNA的降落伞伞衣织物透气性参数仿真验证[J]. 航天返回与遥感, 2009, 30(1):15-20. JIA H, RONG W, CHEN G L. The use of LS-DYNA to simulate the permeability parameters of the parachute canopy[J]. Spacecraft Recovery & Remote Sensing, 2009, 30(1):15-20(in Chinese). [17] 宁雷鸣, 张红英, 童明波. 一种伞衣织物透气性快速预测算法[J]. 航天返回与遥感, 2016, 37(5):10-18. NING L M, ZHANG H Y, TONG M B. A fast permeability estimation method for parachute fabric[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(5):10-18(in Chinese). [18] YANG X, YU L, NIE S C, et al. Aerodynamic performance of the supersonic parachute with material permeability[J]. Journal of Industrial Textiles, 2021, 50(6):812-829. [19] 姜璐璐, 林明月, 薛晓鹏, 等. 不同大气条件下超声速降落伞系统气动特性分析[J]. 航天返回与遥感, 2020, 41(6):77-89. JIANG L L, LIN M Y, XUE X P, et al. Numerical study on aerodynamic characteristic of supersonic parachute system under different atmospheric conditions[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(6):77-89(in Chinese). [20] XUE X P, JIA H, RONG W, et al. Effect of Martian atmosphere on aerodynamic performance of supersonic parachute two-body systems[J]. Chinese Journal of Aeronautics, 2022, 35(4):45-54. [21] MUPPIDI S, O'FARRELL C, TANNER C, et al. Modeling and flight performance of supersonic disk-gap-band parachutes In slender body wakes[C]//2018 Atmospheric Flight Mechanics Conference. Reston:AIAA, 2018. [22] RONDEAU N, FITEK J, DESABRAIS K J, et al. Investigations of parachute fabric permeability under an unsteady pressure differential[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston:AIAA,2013. [23] ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 2(48):89-94. [24] 余莉, 明晓, 陈丽君. 不同透气情况降落伞的流场试验研究[J]. 空气动力学学报, 2008, 26(1):19-25. YU L, MING X, CHEN L J. Experimental investigation on the flow-field of different vent canopy[J]. Acta Aerodynamica Sinica, 2008, 26(1):19-25(in Chinese). [25] INNOCENTINI M D M, SALVINI V R, PANDOLFELLI V C, et al. Permeability of ceramic foams[J]. American Ceramic Society Bulletin, 1999, 78(9):78-84. [26] 杨雪, 余莉, 李允伟, 等. 环帆伞稳降阶段织物透气性影响数值模拟[J]. 空气动力学学报, 2015, 33(5):714-719. YANG X, YU L, LI Y W, et al. Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J]. Acta Aerodynamica Sinica, 2015, 33(5):714-719(in Chinese). [27] BOUSTANI J, ANUGRAH G, BARAD M F, et al. A numerical investigation of parachute deployment in supersonic flow[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020. [28] 陈雅倩. 火星探测用透气降落伞气动干扰的数值模拟研究[D]. 长沙:中南大学, 2021:14-15. CHEN Y Q. Numerical simulation of aerodynamic interaction of porosity parachutes for Mars exploration mission[D]. Changsha:Central South University, 2021:14-15(in Chinese). [29] XUE X P, NISHIYAMA Y, NAKAMURA Y, et al. Parametric study on aerodynamic interaction of supersonic parachute system[J]. AIAA Journal, 2015, 53(9):2796-2801. [30] 姜璐璐. 火星用超声速盘帆伞系统透气性影响及气动特性数值研究[D]. 长沙:中南大学, 2021:11-20. JIANG L L. Numerical study of porosity and aerodynamic characteristics of mars supersonic disksail parachutes[D]. Changsha:Central South University, 2021:11-20(in Chinese). [31] XUE X P, NISHIYAMA Y, NAKAMURA Y, et al. High-speed unsteady flows past two-body configurations[J]. Chinese Journal of Aeronautics, 2018, 31(1):54-64. [32] CLARK I G, MANNING R, ADLER M. Summary of the first high-altitude, supersonic flight dynamics test for the low-density supersonic decelerator project[C]//23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2015. [33] CLARK I, ADLER M. Summary of the second high-altitude, supersonic flight dynamics test for the LDSD project[C]//2016 IEEE Aerospace Conference. Piscataway:IEEE Press, 2016:1-24. |