[1] 刘维伟. 航空发动机叶片关键制造技术研究进展[J]. 航空制造技术, 2016, 59(21):50-56. LIU W W. Research progress on key manufacturing technology of aeroengine blades[J]. Aeronautical Manufacturing Technology, 2016, 59(21):50-56(in Chinese). [2] XIAO G J, HUANG Y. Constant-load adaptive belt polishing of the weak-rigidity blisk blade[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78(9-12):1473-1484. [3] 段继豪, 史耀耀, 李小彪, 等. 整体叶盘柔性磨头自适应抛光实现方法[J]. 航空学报, 2011, 32(5):934-940. DUAN J H, SHI Y Y, LI X B, et al. Adaptive polishing for blisk by flexible grinding head[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):934-940(in Chinese). [4] 张岳. 航发叶片七轴联动数控砂带磨削加工方法及自动编程关键技术研究[D]. 重庆:重庆大学, 2012:12-16. ZHANG Y. Machining method and key technology research on auto-programming of aircraft blade seven axis NC abrasive belt grinding[D]. Chongqing:Chongqing University, 2012:12-16(in Chinese). [5] HUANG H, GONG Z M, CHEN X Q, et al. Robotic grinding and polishing for turbine-vane overhaul[J]. Journal of Materials Processing Technology, 2002, 127(2):140-145. [6] SUN Y Q, GIBLIN D J, KAZEROUNIAN K. Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(1):204-210. [7] QI J D, ZHANG D H, LI S, et al. Modeling of the working accuracy for robotic belt grinding system for turbine blades[J]. Advances in Mechanical Engineering, 2017, 9(6):1-12. [8] SONG Y X, LIANG W, YANG Y. A method for grinding removal control of a robot belt grinding system[J]. Journal of Intelligent Manufacturing, 2012, 23(5):1903-1913. [9] MASOOD S H, BAGAM V K, CHANTANABUBPHA P. A computerised minimum distance algorithm for machining of sculptured surfaces[J]. Computers & Industrial Engineering, 2002, 42(2-4):291-297. [10] XU R F, CHEN Z T, CHEN W Y, et al. Dual drive curve tool path planning method for 5-axis NC machining of sculptured surfaces[J]. Chinese Journal of Aeronautics, 2010, 23(4):486-494. [11] CATANIA G. A computer-aided prototype system for NC rough milling of free-form shaped mechanical part-pieces[J]. Computers in Industry, 1992, 20(3):275-293. [12] HUANG Y, OLIVER J H. Non-constant parameter NC tool path generation on sculptured surfaces[J]. The International Journal of Advanced Manufacturing Technology, 1994, 9(5):281-290. [13] 吴福忠. 点云曲面等残留高度刀具路径规划[J]. 计算机集成制造系统, 2012, 18(5):965-972. WU F Z. Constant scallop-height tool path planning for point cloud surface[J]. Computer Integrated Manufacturing Systems, 2012, 18(5):965-972(in Chinese). [14] KIM B H, CHU C N. Effect of cutter mark on surface roughness and scallop height in sculptured surface machining[J]. Computer-Aided Design, 1994, 26(3):179-188. [15] SURESH K, YANG D C H. Constant scallop-height machining of free-form surfaces[J]. Journal of Engineering for Industry, 1994, 116(2):253-259. [16] 黄翔, 李迎光. 数控编程理论、技术与应用[M]. 北京:清华大学出版社, 2006:135-140. HUANG X, LI Y G. Theory, technology and application of NC programming[M]. Beijing:Tsinghua University Press, 2006:135-140(in Chinese). [17] LEE Y S. Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining[J]. Computer-Aided Design, 1998, 30(7):559-570. [18] 张海洋, 杨文玉, 张家军, 等. 叶片机器人砂带磨抛的轨迹规划研究[J]. 机电工程, 2014, 31(5):578-581, 586. ZHANG H Y, YANG W Y, ZHANG J J, et al. Trajectory planning for roboticbelt grinding of turbine blade[J]. Journal of Mechanical & Electrical Engineering, 2014, 31(5):578-581, 586(in Chinese). [19] 郝炜, 蔺小军, 单晨伟, 等. 薄壁叶片前后缘加工误差补偿技术研究[J]. 机械科学与技术, 2011, 30(9):1446-1450. HAO W, LIN X J, SHAN C W, et al. Research on the machining error compensation for the leading and trailing edges of thin-walled blades[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(9):1446-1450(in Chinese). [20] 张明德, 蔡汉水, 谢乐, 等. 航发叶片前后缘数控砂带磨削关键技术研究[J]. 机械科学与技术, 2018, 37(5):797-803. ZHANG M D, CAI H S, XIE L, et al. Research on key technology of CNC abrasive belt grinding for aircraft engines blade edges[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(5):797-803(in Chinese). [21] 赵正彩. 钛合金空心风扇叶片前后缘自适应数控加工研究[D]. 南京:南京航空航天大学, 2017:12-15. ZHAO Z C. Research on adaptively numerical control machining of tailing and leading edges of titanium hollow fan blade[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017:12-15(in Chinese). [22] 蓝仁浩, 黄云, 陈贵林, 等. 航空发动机叶片精密自适应砂带磨削技术及试验研究[J]. 航空制造技术, 2018, 61(15):16-24. LAN R H, HUANG Y, CHEN G L, et al. Self-adaptive belt grinding technology and its experimental research on aero-engine blade[J]. Aeronautical Manufacturing Technology, 2018, 61(15):16-24(in Chinese). [23] 张军锋, 史耀耀, 蔺小军, 等. 航空发动机叶片前后缘自由式砂带抛光技术[J]. 航空学报, 2017, 38(3):420327. ZHANG J F, SHI Y Y, LIN X J, et al. Freestyle belt polishing technology for leading and trailing edges of aeroengine blade[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):420327(in Chinese). [24] 丁汉, 朱利民. 复杂曲面数字化制造的几何学理论和方法[M]. 北京:科学出版社, 2011:232-237. DING H, ZHU L M. Geometric theories and methods for digital manufacturing of complex surfaces[M]. Beijing:Science Press, 2011:232-237(in Chinese). [25] BRACH R M. Formulation of rigid body impact problems using generalized coefficients[J]. International Journal of Engineering Science, 1998, 36(1):61-71. [26] JENKINS H E, KURFESS T R, LUDWICK S J. Determination of a dynamic grinding model[J]. Journal of Dynamic Systems, Measurement, and Control, 1997, 119(2):289-293. |