[1] 宋令慧, 王守仁, 赵宰炯. 连铸连轧镁合金AZ41微观结构与摩擦磨损性能[J]. 航空学报, 2014, 35(6):1733-1739. SONG L H, WANG S R, CHO J H. Microstructure and friction wear properties of twin-roll casting magneisum alloy AZ41[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1733-1739(in Chinese). [2] 唐荻, 王丹, 江海涛, 等. 异步轧制对AZ31镁合金组织及高温塑性的影响[J]. 塑性工程学报, 2013, 20(2):78-83. TANG D, WANG D, JIANG H T, et al. Effects of differential speed rolling process on microstructure and plastic deformation of magnesium alloy[J]. Journal of Plasticity Engineering, 2013, 20(2):78-83(in Chinese). [3] 吴章斌, 桂良进, 范子杰. AZ31B镁合金挤压材料的力学性能与本构分析[J]. 中国有色金属学报, 2015, 25(2):293-300. WU Z B, GUI L J, FAN Z J. Mechanical properties and constitutive analysis of extruded AZ31B magnesium alloy[J]. Chinese Journal of Nonferrous Metals, 2015, 25(2):293-300(in Chinese). [4] 钟敏, 唐伟琴, 李大永, 等. AZ31B镁合金板材温热成形极限实验研究[J]. 塑性工程学报, 2011, 18(5):59-63. ZHONG M, TANG W Q, LI D Y, et al. Experiment research on forming limit diagram (FLD) of magnesium alloy sheet AZ31B at warm condition[J]. Journal of Plasticity Engineering, 2011, 18(5):59-63(in Chinese). [5] 何维均, 张士宏, 程明, 等. 宏观弹塑性本构模型的研究进展[J]. 塑性工程学报, 2015, 22(3):1-11. HE W J, ZHANG S H, CHENG M, et al. Review on the development of macroscopic elastic-plastic constitutive models[J]. Journal of Plasticity Engineering, 2015, 22(3):1-11(in Chinese). [6] HILL R. A theory of the yielding and plastic flow of anisotropic metals[C]//Proceedings of the Royal Society of London Series A, Mathematical and Engineering Sciences. London:The Royal Society Publishing, 1948, 193(1033):281-297. [7] BARLAT F, LEGE D J, BREM J C. A six-component yield function for anisotropic materials[J]. International Journal of Plasticity, 1991, 7(7):693-712. [8] BARLAT F, MAEDA Y, CHUNG K, et al. Yield function development for aluminum alloy sheets[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(11):1727-1763. [9] BARLAT F, BREM J C, YOON J W, et al. Plane stress yield function for aluminum alloy sheets-Part 1:Theory[J]. International Journal of Plasticity, 2003, 19(9):1297-1319. [10] HOSFORD W F. Incorporating work hardening in yield loci calculations[C]//Strength of Metals and Alloys. Aachen:Federal Republic of Germany, 1979, 775-780. [11] CAZACU O, PLUNKETT B, BARLAT F. Orthotropic yield criterion for hexagonal closed packed metals[J]. International Journal of Plasticity, 2006, 22(7):1171-1194. [12] PLUNKETT B, CAZACU O, BARLAT F. Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals[J]. International Journal of Plasticity, 2008, 24(5):847-866. [13] TARI D G, WORSWICK M J. Elevated temperature constitutive behavior and simulation of warm forming of AZ31B[J]. Journal of Materials Processing Technology, 2015, 221:40-55. [14] 郎利辉, 杨希英, 刘康宁, 等. 一种韧性断裂准则中材料常数的计算模型及其应用[J]. 航空学报, 2015, 36(2):672-679. LANG L H, YANG X Y, LIU K N, et al. A calculating model of material constants in ductile fracture criterion and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):672-679(in Chinese). [15] TENG B G, YUAN S J, CHEN Z T, et al. Plastic damage of T-shape hydroforming[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(S2):s294-s301. [16] 王瑞泽, 陈章华, 臧勇. 基于Gurson模型的镁合金板材温热冲压成形研究[J]. 北京科技大学学报, 2014, 36(4):459-466. WANG R Z, CHEN Z H, ZANG Y. Thermal stamping formability of magnesium alloy sheet based on the Gurson model[J]. Journal of University of Science and Technology Beijing, 2014, 36(4):459-466(in Chinese). [17] GURSON A L. Continuum theory of ductile rupture by void nucleation and growth:Part 1-Yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1977, 99(1):2-15. [18] NEEDLEMAN A, TVERGAARD V. An analysis of dynamic, ductile crack growth in a double edge cracked specimen[J]. International Journal of Fracture, 1991, 49(1):41-67. [19] KIM J, RYOU H, KIM D, et al. Constitutive law for AZ31B Mg alloy sheets and finite element simulation for three-point bending[J]. International Journal of Mechanical Sciences, 2008, 50(10):1510-1518. [20] STEWART J B, CAZACU O. Analytical yield criterion for an anisotropic material containing spherical voids and exhibiting tension-compression asymmetry[J]. International Journal of Solids and Structures, 2011, 48(2):357-373. [21] YOON J, CAZACU O, MISHRA R K. Constitutive modeling of AZ31 sheet alloy with application to axial crushing[J]. Materials Science and Engineering:A, 2013, 565:203-212. [22] WANG R, CHEN Z, LI Y, et al. Failure analysis of AZ31 magnesium alloy sheets based on the extended GTN damage model[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(12):1198-1207. [23] 陈志英, 董湘怀. 各向异性GTN损伤模型及其在板料成形中的应用[J]. 上海交通大学学报, 2008, 42(9):1414-1419. CHEN Z Y, DONG X H. The Anisotropic GTN Damage model and its application in sheet metal forming[J]. Journal of Shanghai Jiaotong University, 2008, 42(9):1414-1419(in Chinese). [24] TARI D G, WORSWICK M J, WINKLER S. Experimental studies of deep drawing of AZ31B magnesium alloy sheet under various thermal conditions[J]. Journal of Materials Processing Technolog, 2013, 213(8):1337-1347. [25] LI W J, ZHAO G Q, MA X W, et al. Study on forming limit diagrams of AZ31B alloy sheet at different temperatures[J]. Materials & Manufacturing Processes, 2013, 28(3):306-311. [26] LEE S, HAM H J, KWON S Y, et al. Thermal conductivity of magnesium alloys in the temperature range from -125℃ to 400℃[J]. International Journal of Thermophysics, 2013:34(12):2343-2350. |