[1] 崔尔杰. 近空间飞行器研究发展现状及关键技术问题[J]. 力学进展, 2009, 39(6):658-673. CUI E J. Research statutes development trends and key technical problems of near space flying vehicles[J]. Advances in Mechanics, 2009, 39(6):658-673(in Chinese). [2] ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. New York:McGraw-Hill Book Company, 2000:1988-1989. [3] 瞿章华. 高超声速空气动力学[M]. 长沙:国防科技大学出版社, 2001. QU Z H. Hypersonic aerodynamics[M]. Changsha:National Defence Science and Technology Press, 2001(in Chinese). [4] 孟松鹤, 丁小恒, 易法军, 等. 高超声速飞行器表面测热技术综述[J]. 航空学报, 2014, 35(7):1749-1775. MENG S H, DING X H, YI F J, et al. Overview of heat measurement technology for hypersonic vehicle surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7):1749-1775(in Chinese). [5] 孟松鹤, 金华, 王国林, 等. 热防护材料表面催化特性研究进展[J]. 航空学报, 2014, 35(2):287-302. MENG S H, JIN H, WANG G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):287-302(in Chinese). [6] NASLSIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors[J]. Composites Science and Technology, 2004, 64(2):155-170. [7] 张立同. 纤维增韧碳化硅陶瓷复合材料:模拟、表征与设计[M]. 北京:化学工业出版社, 2009. ZHANG L T. Fiber-reinforced silicon carbide ceramic composites:Modelling, characterization & design[M]. Beijing:Chemical Industry Press, 2009(in Chinese). [8] 张立同, 成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. ZHANG L T, CHENG L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2):1-6(in Chinese). [9] CHENG L F, XU Y D, ZHANG L T, et al. Effect of glass sealing on the oxidation behavior of three dimensional C/SiC composites in air[J]. Carbon, 2001, 39(8):1127-1133. [10] CHENG L F, XU Y D, ZHANG L T, et al. Oxidation and defect control of CVD SiC coating on three dimensional C/SiC composites[J]. Carbon, 2002, 40(12):2229-2234. [11] CHENG L F, XU Y D, ZHANG L T, et al. Effect of carbon interlayer on oxidation behavior of C/SiC composites with a coating from room temperature to 1500℃[J]. Materials Science and Engineering A, 2001, 30(2):219-225. [12] GOULARD R. On catalytic recombination rates in hypersonic stagnation heat transfer[J]. Jet Propulsion, 1958, 28(11):737-745. [13] KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory, AIAA-2000-2366[R]. Reston,VA:AIAA, 2000. [14] WILLEY R J. Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(1), 55-62. [15] GORDEEV A N, KOLESNIKOV A F, YAKUSHIN M I. Effect of surface catalytic activity on non-equilibrium heat transfer in a subsonic jet of dissociated nitrogen[J]. Fluid Dynamics, 1985, 20(3):478-484. [16] KOVALEV V L,KOLESNIKOV A F. Experimental and theoretical simulation of heterogeneous catalysis in aerothermochemistry[J]. Fluid Dynamics, 2005, 40(5):669-693. [17] ITO T, KUROTAKI T, SUMI T, et al. Evaluation of surface catalytic effect on TPS in 110kW ICP-heated wind tunnel:AIAA-2005-189[R]. Reston, VA:AIAA, 2005. [18] ITO T, ISHIDA K, MIZUNO, et al. 110 kW new high enthalpy wind tunnel heated by inductively coupled plasma:AIAA-2003-7023[R]. Reston, VA:AIAA, 2003. [19] 刘丽萍, 王国林, 王一光, 等. 高焓化学非平衡流条件下防热材料表面催化特性的试验方法[J]. 航空学报, 2017, 38(10):121317. LIU L P, WANG G L,WANG Y G, et al. The methods to determine surface catalytic recombination coefficients of thermal protection material in high enthalpy dissociated flows[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121317(in Chinese). [20] LIU L P, WANG Y G, WANG G L, et al. Experiments to determine surface catalytic recombination coefficients of ultra high temperature ceramics in high temperature dissociated flows:AIAA-2017-2153[R]. Reston, VA:AIAA, 2017. [21] FRANCESCO P, OLIVIER C, BERND H, et al. Gas/surface interaction study on ceramic matrix composite thermal protection system in the VKI plasmatron facility:AIAA-2011-3642[R]. Reston, VA:AIAA, 2011. [22] CHAZOT O, PANERAIY F, MUYLAERT J M. Catalysis phenomena determination in plasmatron facility for flight experiment design:AIAA-2010-1248[R]. Reston, VA:AIAA, 2010. [23] STEWART D A. Determination of surface catalytic efficiency for thermal protection materials-room temperature to their upper use limit:AIAA-1996-1869[R]. Reston, VA:AIAA,1996. [24] PIDAN S, KURTZ M A, HERDRICH G M, et al. Recombination coefficients and spectral emissivity of silicon carbide-based thermal protection materials[J]. Journal of Thermophysics and Heat Transfer, 2005, 19(4):37-46. [25] VLASOV A V, ZALOGIN G N, ZEMLYANSKⅡ B A, et al. Methods and results of an experimental determination of the catalytic activity of materials at high temperature[J]. Fluid Dynamics, 2003, 38(5):815-825. |