[1] Liu X, Zhu D M, Lu M W, et al. h, p, hp adaptive meshless method for plane crack problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2000, 32(3): 308-318 (in Chinese). 刘欣, 朱德懋, 陆明万, 等. 平面裂纹问题的h, p, hp型自适应无网格方法的研究[J].力学学报, 2000, 32(3): 308-318.
[2] Chen S S, Liu Y H, Cen Z Z. Lower bound limit analysis by using the element-free Galerkin method with orthogonal basis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5): 633-640 (in Chinese). 陈莘莘, 刘应华, 岑章志. 极限下限分析的正交基无单元Galerkin法[J]. 力学学报, 2007, 39(5): 633-640.
[3] Batina J. A gridless Euler/Navier-Stokes solution algorithm for complex two-dimensional application, AIAA-1993-0333[R]. Reston: AIAA, 1993.
[4] Sridar D, Balakrishnan N. An upwind finite difference scheme for meshless solvers[J]. Journal of Computational Physics, 2003, 189(1): 1-29.
[5] Chen H Q. An implicit gridless method and its applications[J]. Acta Aerodynamica Sinica, 2002, 20(2): 133-140 (in Chinese). 陈红全. 隐式无网格算法及其应用研究[J].空气动力学学报, 2002, 20(2): 133-140.
[6] Munikrishna N, Balakrishnan N. Turbulent flow computations on a hybrid Cartesian point distribution using meshless solver LSFD-U[J]. Computers & Fluids, 2011, 40(1): 118-138.
[7] Wang G, Ye Z Y, Jiang C Q, et al. Gridless method for Navier-Stokes equations with high Reynolds number[J]. Chinese Journal of Applied Mechanics, 2007, 24(3): 348-352 (in Chinese). 王刚, 叶正寅, 蒋超奇, 等. 高雷诺数下求解NS方程的无网格算法[J]. 应用力学学报, 2007, 24(3): 348-352.
[8] Cai X W, Tan J J, Zhang M, et al. Meshless least square method based on COP reconstruction for viscous flow simulation[J]. Journal of Nanjing University of Science and Technology, 2013, 37(6): 880-885 (in Chinese). 蔡晓伟, 谭俊杰, 张木, 等. 粘性流模拟中基于点云重构的最小二乘无网格法[J]. 南京理工大学学报, 2013, 37(6): 880-885.
[9] Launder B E, Spalding D B. Lectures in mathematical models of turbulence[M]. London: Academic Press, 1972.
[10] Yakhot V, Orzag S A. Renormalization group analysis of turbulence. I. basic theory[J]. Journal of Scientific Computing, 1986, 1(1): 3-51.
[11] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[R]. AIAA Journal,1994, 32(8): 1598-1605.
[12] Liou M S. A further development of the AUSM+ scheme towards robust and accurate solutions for all speeds, AIAA-2003-4116[R]. Reston: AIAA, 2003.
[13] May G, Jameson A. Unstructured algorithm for inviscid and viscous flows embedded in a unified solver architecture: Flo3xx, AIAA-2005-0318[R]. Reston: AIAA, 2005.
[14] Haase W, Bradsma F, Elsholz E, et al. EUROVAL-an European initiative on validation of CFD codes notes on numerical fluid mechanics[M]//Notes on numerical fluid mechanics. Braunschweig, Wiesbaden: Vieweg, 1993.
[15] Harris C D. Two-dimensional aerodynamic characteristics of the NACA0012 airfoil in the Langley 8-foot transonic pressure tunnel, NASA-TM-81927[R]. Washington, D.C.: NASA, 1981.
[16] Cook P H, Donald M A, Firmin M C P. AerofoilRAE2822 pressure distribution, boundary layer and wake measurement, Report No. AR 138[R]. [S.l.]: AGARD, 1979.
[17] Michel D, Aftosmis M J, Berger M J, et al. Automatic hybird-cartesian grid generation for high-Reynolds number flows around complex geometries, AIAA-1999-0777[R]. Reston: AIAA, 1999.
[18] Medic G, Kalitzin G, Iaccarino G, et al. Adaptive wall functions with applications, AIAA-2006-3744[R]. Reston: AIAA, 2006.
[19] Peng S H, Eliasson P, Davidson L. Examination of the shear stress transport assumption with a low-Reynolds number k-ω model for aerodynamic flows, AIAA-2007-3864[R]. Reston: AIAA, 2007.
[20] Kral L D. Recent experience with different turbulence models applied to the calculation of flow over aircraft components[J]. Progress in Aerospace Sciences,1998, 34: 481-541. |