[1] REDDY K R, TOFFOLETTO R, JONES K R W. Numerical simulation of ship airwake[J]. Computers & Fluids, 2000, 29(4): 451-465.
[2] ZHANG F, XU H, BALL N G. Numerical simulation of unsteady flow over SFS2 ship model[C]//Proceedings of the 47th AIAA Aerospace Sciences Meeting and Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
[3] POLSKY S A. A computational study of unsteady ship airwake[C]//Proceedings of the 40th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2002.
[4] 郜冶, 刘长猛. 护卫舰气流场数值计算研究[J]. 哈尔滨工程大学学报, 2013, 34(5): 599-603. GAO Y, LIU C M. Numerical calculation of frigate ship airwake[J]. Journal of Harbin Engineering University, 2013, 34(5): 599-603 (in Chinese).
[5] 黄斌, 徐国华, 史勇杰. 机库门开合对舰载直升机着舰域流场的影响研究[J]. 南京航空航天大学学报, 2015, 47(2): 198-204. HUANG B, XU G H, SHI Y J. Research on influence of hangar door opening and closing on landing flowfield for shipborne helicopters[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 198-204 (in Chinese).
[6] BRIDGES D O, HORN J F, ALPMAN E, et al. Coupled flight dynamics and CFD analysis of pilot workload in ship airwakes[C]//Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2007.
[7] YANG A M, YANG X Q. Multigrid acceleration and chimera technique for viscous flow past a hovering rotor[J]. Journal of Aircraft, 2011, 48(2): 713-715.
[8] YANG G W, ZHUANG L X. Numerical simulation of rotor flow in hover[J]. Journal of Aircraft, 2000, 37(2): 221-226.
[9] 许和勇, 叶正寅. 悬停共轴双旋翼干扰流动数值模拟[J]. 航空动力学报, 2011, 26(2): 453-457. XU H Y, YE Z Y. Numerical simulation of interaction unsteady flows around co-axial rotors in hover[J]. Journal of Aerospace Power, 2011, 26(2): 453-457 (in Chinese).
[10] 樊枫, 徐国华, 史勇杰. 基于CFD方法的直升机旋翼/尾桨非定常气动干扰计算[J]. 航空动力学报, 2014, 29(11): 2633-2642. FAN F, XU G H, SHI Y J. Calculations of unsteady aerodynamic interaction between main-rotor and tail-rotor of helicopters based on CFD method[J]. Journal of Aerospace Power, 2014, 29(11): 2633-2642 (in Chinese).
[11] LEE Y, SILVA M. CFD modeling of rotor flowfield aboard ship[C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
[12] MEAKIN R L. A new method for establishing intergrid communication among systems of overset grids: AIAA-1991-1586-CP[R]. Reston: AIAA, 1991.
[13] CROZON C, STEIJL R, BARAKOS G N. Numerical study of helicopter rotors in a ship airwake[J]. Journal of Aircraft, 2014, 51(6): 1813-1832.
[14] BRÉZILLON J. Simulation of rotor-fuselage interactions by using an actuator disk[C]//26th European Rotorcraft Forum. Hague: Netherlands Association of Aeronautical Engineers, 2000.
[15] 孙鹏, 耿雪, 赵佳, 等. 风向对直升机旋翼与甲板流场结构影响[J]. 航空动力学报, 2015, 30(8): 1802-1810. SUN P, GENG X, ZHAO J, et al. Influence of wind directions on the flow field structures of helicopter rotor and deck[J]. Journal of Aerospace Power, 2015, 30(8): 1802-1810 (in Chinese).
[16] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372.
[17] JAMESON A. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings: AIAA-1991-1596[R]. Reston: AIAA, 1991.
[18] KRISHNAMURTY V S, SHYY W. Study of compressibility modifications to the k-ε turbulence model[J]. Physics of Fluids, 1997, 9(9): 2769-2788.
[19] ZHANG F, XU H, BALL N G. Numerical simulation of unsteady flow over SFS 2 ship model: AIAA-2009-1981[R]. Reston: AIAA, 2009.
[20] MINECK R E, GORTON S A. Steady and periodic pressure measurements on a generic helicopter fuselage model in the presence of a rotor: NASA/TM-2000-210286[R]. Washington, D.C.: NASA, 2000. |