Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (24): 230414.doi: 10.7527/S1000-6893.2024.30414
• Solid Mechanics and Vehicle Conceptual Design • Previous Articles
Peng ZOU, Junchao YANG, Xiangming CHEN(), Xiaochuan LIU
Received:
2024-03-18
Revised:
2024-05-06
Accepted:
2024-05-27
Online:
2024-06-12
Published:
2024-06-07
Contact:
Xiangming CHEN
E-mail:chenxiangming@cae.ac.cn
Supported by:
CLC Number:
Peng ZOU, Junchao YANG, Xiangming CHEN, Xiaochuan LIU. Readiness assessment system method of physical testing of aircraft structural strength[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 230414.
Table 1
Classification and definition of TRL for physical testing of aircraft strength
等级 | 定义 | 解释 |
---|---|---|
CTRL 1 | 明确试验对象,理解试验目的,提出试验基本技术思路 | 明确试验对象,理解试验目的,初步明确技术基本原理,并已取得相关技术资料,掌握相关专业知识,提出基本试验技术思路 |
CTRL 2 | 确认试验目的与技术基本原理,提出应用方案设想 | 根据技术基本原理,提出了技术概念、技术应用方案和(或)应用设想 |
CTRL 3 | 确定验证环境,具有部分关键部件或功能原理样机,和(或)核心关键技术完成初步功能验证 | 确定验证环境,具有部分关键的部件或功能试验模型等原理样机,和(或)技术应用方案的核心关键技术或特性通过了可行性分析,完成初步功能验证 |
CTRL 4 | 完成完整试验方案设计并通过相关专家评审 | 基本完成技术攻关,核心环节通过相关实验室环境试验验证,形成完整试验方案并通过专家评审 |
CTRL 5 | 以试验样件为载体完成方案设计并通过试验委托方评审和(或)满足适航符合性要求 | 完成技术攻关,以实际试验样件为载体完成方案设计,并通过试验委托方评审和(或)满足适航符合性要求,试验方案初步冻结 |
CTRL 6 | 以试验样件或实际试件为载体完成试验分系统功能测试验证 | 以试验样件或实际试件为载体完成了试验分系统功能测试验证,满足精度及重复性要求,在考核环境有效应用,该技术及其载体设备使用人员通过考核达到比较熟练程度 |
CTRL 7 | 以实际试件为载体完成首次使用验证,和(或)通过了适航审查 | 以实际试件为载体应用该技术完成了首次使用验证,和(或)通过了适航审查 |
CTRL 8 | 以批次为单位完成该批次所有试件试验,和(或)试验委托方采用该试验获得的数据开展设计验证 | 以批次为单位应用该技术完成所有试件试验,完成试验内容,和(或)试验委托方采用该试验获得的数据开展设计验证,达到试验目的 |
CTRL 9 | 通过多批次(三次及以上)验证且无明显问题,和(或)试验数据支撑完成结构设计验证 | 应用该技术通过多批次(三次及以上)验证且无明显问题,和(或)试验数据支撑完成结构设计验证 |
Table 3
Example of typical level condition
序号 | 适用专业 | 条件内容 | 条件类型 |
---|---|---|---|
1 | CDEFGHI | 提出了技术概念 | 方案 |
2 | CDEFGHI | 明确了验证目的 | 方案 |
3 | CDEFGHI | 确认了试验技术基本原理 | 方案 |
4 | CDEFGHI | 给出了技术的大体实物构成并给出了部分特性 | 方案 |
5 | CDEFGHI | 初步分析了技术所需实现的主要功能 | 方案 |
6 | CDEFGHI | 了解所需的关键部件 | 方案 |
7 | CDEFGHI | 确认了技术涉及的测量设备/软件 | 设备 |
8 | CDEFGHI | 确认了技术涉及的控制设备/软件 | 设备 |
9 | CDEFGHI | 了解相关控制设备/软件的精度、限制 | 设备 |
10 | CDEFHI | 了解相关测量设备/软件的精度、限制 | 设备 |
11 | CDEFHI | 明确了技术的用户 | 管理 |
12 | CDEFGHI | 知道该技术可以支持哪一类结构物理验证需求 | 管理 |
13 | DEFGHI | 知道研究人员和研究设施的能力和条件限制 | 管理 |
14 | CDEFGHI | 定性分析了项目的风险区域(含费用、进度和性能) | 管理 |
Table 5
Definition of integration readiness level[36]
等级 | 定义 | 具体描述 |
---|---|---|
IRL 1 | 明确技术之间的相互作用,描述其细节特征 | 最低等级,描述了技术集成的介质选择 |
IRL 2 | 通过技术的相互作用在一定程度上确定其集成特征(如技术之间的影响力) | 技术间的集成介质一旦确定,则需要选定信号传递方法来描述技术之间如何通过介质进行相互作用。由于IRL2代表的是两个技术通过给定介质实现相互影响的能力,因此也代表了概念验证等级。 |
IRL 3 | 技术之间兼容性良好,可以实现高效而有序的相互作用 | 证明技术之间能够成功集成的最低等级。表明技术之间不仅能够相互影响,而且能够进行数据传递。IRL3代表技术成熟过程的第一个实际步骤。 |
IRL 4 | 有足够的细节信息来保证技术之间能够集成良好 | 不仅要求两个技术之间能够进行数据传递,还需要对传递信息的质量进行检验,以确保传出的信息与接收到的信息保持一致。 |
IRL 5 | 建立良好的控制机制,以确保集成的顺利实施、管理和终止 | 简单描述了集成技术的自我控制能力,包括技术的建立、管理和终止。 |
IRL 6 | 参与集成的技术能够根据实际应用来接收、转换以及构建信息 | 不仅包括了集成技术自我控制的能力,还能实现信息交换,对特定信息进行标记,将其它形式的数据转换为本地数据形式。 |
IRL 7 | 提供充足的细节信息对集成技术进行验证和可行性证明 | 集成技术不仅从技术角度达标,还要从需求角度满足要求。IRL7表明技术满足了性能、产量和可靠性的要求。 |
IRL 8 | 技术集成完成并且在系统环境中通过演示论证 | 不仅代表技术满足了集成要求,而且在相关环境中完成了系统级别的演示。一些未识别的错误将会在相关环境的验证过程中暴露出来。 |
IRL 9 | 在最终的操作系统中通过试验验证 | 代表了集成技术可以在最终应用环境中运行良好。TRL在达到9级之前,必须满足该技术能够成功地集成到系统中,并且已经在相关环境之中得到验证。 |
1 | 陈炜钢, 王静, 刘沃野, 等. 美军采办项目技术成熟度等级计算器简介[J]. 项目管理技术, 2011, 9(9): 104-109. |
CHEN W G, WANG J, LIU W Y, et al. Brief introduction of technical maturity grade calculator for US military acquisition projects[J]. Project Management Technology, 2011, 9(9): 104-109 (in Chinese). | |
2 | 邢晨光, 程文渊, 宋刚. 国内外技术成熟度评价相关标准规范对比分析研究[J]. 军事运筹与系统工程, 2020, 34(1): 74-80. |
XING C G, CHENG W Y, SONG G. Comparative analysis of domestic and foreign standards and specifications for technology maturity evaluation[J]. Military Operations Research and Systems Engineering, 2020, 34(1): 74-80 (in Chinese). | |
3 | 吴琼, 汪送. 非致命武器装备系统成熟度评估研究综述[J]. 兵器装备工程学报, 2020, 41(10): 10-15. |
WU Q, WANG S. Summary of research on system maturity assessment of non-lethal weapon equipment[J]. Journal of Ordnance Equipment Engineering, 2020, 41(10): 10-15 (in Chinese). | |
4 | 谢梅芳, 杨建军. 基于熵权的装备研制技术成熟度评估方法[J]. 武汉理工大学学报(信息与管理工程版), 2010, 32(4): 673-676. |
XIE M F, YANG J J. Evaluation method of technology readiness level in weapon development based on entropy-weight method[J]. Journal of Wuhan University of Technology (Information&Management Engineering), 2010, 32(4): 673-676 (in Chinese). | |
5 | 田陇豫, 荆涛, 刘磊. 基于关键技术贡献的系统成熟度评价算法研究[J]. 计算机仿真, 2011, 28(10): 28-30, 56. |
TIAN L Y, JING T, LIU L. Study on algorithm for system readiness assessment based on contributions of critical techniques[J]. Computer Simulation, 2011, 28(10): 28-30, 56 (in Chinese). | |
6 | 夏炜, 邓平煜, 陈稀亮. 基于软件关键技术元素的技术成熟度评价[J]. 航空电子技术, 2012, 43(5): 36-38. |
XIA W, DENG P Y, CHEN X L. Technology maturity evaluation based on key technology elements of software[J]. Avionics Technology, 2012, 43(5): 36-38 (in Chinese). | |
7 | 魏法杰, 姜姗. 基于熵权的复杂装备研制过程技术成熟度评价研究[J]. 中国管理科学, 2012, 20(S2): 911-915. |
WEI F J, JIANG S. TRL evaluation of R&D process of complex equipment based on entropy method[J]. Chinese Journal of Management Science, 2012,20 (S2): 911-915 (in Chinese). | |
8 | 吴诗辉, 解江, 刘晓东, 等. 装备研制项目的模糊挣值管理方法[J]. 航空学报, 2017, 38(2): 320258. |
WU S H, XIE J, LIU X D, et al. Method of fuzzy earned value management for weapon equipment development project[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 320258 (in Chinese). | |
9 | 谢伟华, 侯俊杰, 章威. 基于技术成熟度的技术价值评估方法研究[J]. 今日科苑, 2018(7): 49-56. |
XIE W H, HOU J J, ZHANG W. Research on technology value evaluation method based on technology maturity [J]. Today Science Park, 2018 (7): 49-56 (in Chinese). | |
10 | 司莙鹏, 牟晖, 田迪, 等. 复杂产品项目管理中技术成熟度等级的梯度化发展研究[J]. 航空精密制造技术, 2019, 55(6): 40-44. |
SI J P, MOU H, TIAN D, et al. Research on gradient development of technology readiness level in management of complex product projects[J]. Aviation Precision Manufacturing Technology, 2019, 55(6): 40-44 (in Chinese). | |
11 | 李亮, 王婷婷, 初洪宇, 等. 基于技术成熟度的关键技术攻关策划研究与实践[J]. 导弹与航天运载技术, 2022(4):143-148. |
LI L, WANG T T, CHU H Y, et al. Research and practice of key technology breakthrough planning based on technology readiness assessment [J]. Missiles and Space Vehicles, 2022 (4): 143-148 (in Chinese). | |
12 | 初洪宇, 谢飞强, 林萌, 等. 基于技术成熟度的重大工程技术风险分析与控制方法研究[J]. 航天工业管理, 2022(9): 105-109. |
CHU H Y, XIE F Q, LIN M, et al. Research on risk analysis and control method of major engineering technology based on technology maturity[J]. Aerospace Industry Management, 2022(9): 105-109 (in Chinese). | |
13 | 张雪莹, 赖来源, 曾庆彬, 等. 基于模糊评价的智能用电新技术成熟度模型[J]. 广东电力, 2022, 35(3): 69-78. |
ZHANG X Y, LAI Y Y, ZENG Q B, et al. Research on maturity model of new intelligent power consumption technology based on fuzzy evaluation[J]. Guangdong Electric Power, 2022, 35 (3): 69-78 (in Chinese). | |
14 | SAUSER B, RAMIREZ-MARQUEZ J E, MAGNAYE R, et al. A systems approach to expanding the technology readiness level within defense acquisition[R]. International Journal of Defense Acquisition Management, 2008. |
15 | GOVE R. Development of an integration ontology for systems operational effectiveness[D]. Hoboken: Stevens Institute of Technology, 2007. |
16 | SAUSER B, GOVE R, FORBES E, et al. Integration maturity metrics: Development of an integration readiness level[J]. Information Knowledge Systems Management, 2010, 9(1): 17-46. |
17 | 中国人民解放军总装备部. 装备技术成熟度等级划分及定义: GJB 7688-2012[R]. 北京: 中国人民解放军总装备部, 2012. |
Chinese People’s Liberation Army General Armament Department. Equipment technology readiness level classification and definition: GJB 7688-2012[R]. Beijing: Chinese People’s Liberation Army General Armament Department, 2012 (in Chinese). | |
18 | 中国人民解放军总装备部. 装备技术成熟度评价程序:GJB 7689-2012[R]. 北京: 中国人民解放军总装备部,2012. |
Chinese People’s Liberation Army General Armament Department. Equipment technology readiness evaluation procedure: GJB 7689-2012[R]. Beijing: Chinese People’s Liberation Army General Armament Department, 2012 (in Chinese). | |
19 | 陈亚莉. 技术成熟度评估在航空材料开发中的应用[J]. 航空制造技术, 2010, 53(14): 62-65. |
CHEN Y L. Application of technology readiness assessment in aeronautical material development[J]. Aeronautical Manufacturing Technology, 2010, 53(14): 62-65 (in Chinese). | |
20 | 朱江辉, 孙勇军, 周占廷. 技术成熟度评估在飞行试验中的应用[J]. 飞行力学, 2015, 33(3): 193-195+204. |
ZHU J H, SUN Y J, ZHOU Z T. Application of technology readiness assessment in flight test[J]. Flight Dynamics, 2015,33 (3): 193-195+204 (in Chinese). | |
21 | 李林, 卢嘉晨. 民机试飞技术成熟度评估标准化实践[J]. 中国标准化, 2016(22): 218-219. |
LI L, LU J C. Standardization of civil aircraft flight test technology maturity assessment practice[J]. China Standardization, 2016(22): 218-219 (in Chinese). | |
22 | 金慧萍, 孙杨慧, 刘晓松, 等. 技术成熟度在航空发动机研制中的应用研究[J]. 航空动力, 2018 (4): 58-62. |
JIN H P, SUN Y H, LIU X S, et al. Application of technical readiness for aero engine development[J]. Aviation Power, 2018 (4): 58-62 (in Chinese). | |
23 | 刘庆东, 史妍妍, 崔洋, 等. 航空发动机传动系统技术成熟度评价方法的应用[J]. 航空发动机, 2019, 45(1): 92-96. |
LIU Q D, SHI Y Y, CUI Y, et al. Application of technology readiness level evaluation method for aeroengine transmission system[J]. Aeroengine, 2019, 45(1): 92-96 (in Chinese). | |
24 | 刘宪德, 刘青春. 技术成熟度评价在飞行管理系统产品研发中的应用[J]. 航空电子技术, 2019, 50(1): 15-19. |
LIU X D, LIU Q C. Application of technology readiness assessment in the development of flight management system[J]. Avionics Technology, 2019, 50(1): 15-19 (in Chinese). | |
25 | 卢健, 杨天, 熊艳才, 等. 新材料技术成熟度等级划分与评估体系研究[J]. 中国金属通报, 2020(1): 111-112. |
LU J, YANG T, XIONG Y C, et al. Research on the classification and evaluation system of readiness level of new materials technology [J]. China Metal Bulletin, 2020 (1): 111-112 (in Chinese). | |
26 | 杨帅, 闫斐然. 基于航空材料技术成熟度评价基础的项目管理方法研究[J]. 中国新通信, 2021, 23(10): 135-136. |
YANG S, YAN F R. Research on project management method based on aviation material technology maturity evaluation[J]. China New Telecommunications, 2021, 23(10): 135-136 (in Chinese). | |
27 | 曹明, 黄金泉, 周健, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅰ: 气路、机械和FADEC系统故障诊断与预测[J]. 航空学报, 2022, 43(9): 625573. |
CAO M, HUANG J Q, ZHOU J, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅰ: Diagnosis and prognosis of engine gas path, mechanical and FADEC[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625573 (in Chinese). | |
28 | 王皓, 陈根良. 机器人型装备在航空装配中的应用现状与研究展望[J]. 航空学报, 2022, 43(5): 626128. |
WANG H, CHEN G L. Research progress and perspective of robotic equipment applied in aviation assembly[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 626128 (in Chinese). | |
29 | 孙继鹏, 姜利祥, 李涛, 等. 技术成熟度评价在航天器地面环境试验中的应用[J]. 航天器环境工程, 2014, 31(4): 451-455. |
SUN J P, JIANG L X, LI T, et al. Application of technology readiness assessment in spacecraft ground environment test[J]. Spacecraft Environment Engineering, 2014, 31(4): 451-455 (in Chinese). | |
30 | 王婷婷, 李亮, 谢平, 等. 技术成熟度评价在航天系统工程中的应用研究[J]. 中国航天, 2017(9): 24-29. |
WANG T T, LI L, XIE P, et al. Research on the application of technology readiness assessment in aerospace systems engineering [J]. China Aerospace, 2017 (9): 24-29 (in Chinese). | |
31 | 王婷婷, 范宇, 鹿国华, 等. 航天工程技术成熟度评价研究与实践[J]. 中国航天, 2018(4): 34-38. |
WANG T T, FAN Y, LU G H, et al. Research and practice on technology maturity evaluation of aerospace engineering[J]. Aerospace China, 2018(4): 34-38 (in Chinese). | |
32 | 章威, 马宽, 党丽芳. 运载火箭技术成熟度评价方法研究[J]. 航天标准化, 2018(2): 1-6. |
ZHANG W, MA K, DANG L F. Research on evaluation method of technology maturity of launch vehicle[J]. Aerospace Standardization, 2018(2): 1-6 (in Chinese). | |
33 | 章威, 谢伟华, 包彦明, 等. 运载火箭技术成熟度评价应用研究[J]. 军民两用技术与产品, 2019(11): 36-41. |
ZHANG W, XIE W H, BAO Y M, et al. Research on application of technology maturity evaluation of launch vehicle[J]. Dual Use Technologies & Products, 2019(11): 36-41 (in Chinese). | |
34 | 田雪颖. 航天产品成熟度评价软件设计与实现[J]. 航天工业管理, 2022(4): 32-34. |
TIAN X Y. Design and implementation of maturity evaluation software for aerospace products[J]. Aerospace Industry Management, 2022(4): 32-34 (in Chinese). | |
35 | 刘栋梁, 顾继俊, 康凯, 等. 海洋工程装备行业技术成熟度的研究与应用[J]. 海洋石油, 2018, 38(2): 101-104, 116. |
LIU D L, GU J J, KANG K, et al. Study and application of technical maturity of marine engineering equipment industry[J]. Offshore Oil, 2018, 38(2): 101-104, 116 (in Chinese). | |
36 | 聂小云. 基于TRL的海洋能装备技术成熟度等级划分及评估研究[D]. 上海: 上海交通大学, 2018. |
NIE X Y. Research on classification and evaluation of technical maturity of marine energy equipment based on TRL[D].Shanghai: Shanghai Jiao Tong University, 2018 (in Chinese). | |
37 | 卢永进, 吴盛, 王玫. 基于成熟度的舰船厂所协同设计技术[J]. 机械, 2019, 46(11): 65-70. |
LU Y J, WU S, WANG M. Research on collaborative design technology between institute and shipyard based on maturity degree[J]. Machinery, 2019, 46 (11): 65-70 (in Chinese). | |
38 | 金伟晨. 技术成熟度模型建立及其海工应用[J]. 船舶物资与市场, 2019(9): 11-16. |
JIN W C. Establishment of technology maturity model and its offshore application[J]. Marine Equipment/Materials & Marketing, 2019(9): 11-16 (in Chinese). | |
39 | 任静, 胡晓轩, 杨山林, 等. 船舶制造技术成熟度评估系统[J]. 造船技术, 2021, 49(5): 71-76. |
REN J, HU X X, YANG S L, et al. Ship manufacturing technology maturity evaluation system[J]. Marine Technology, 2021, 49(5): 71-76 (in Chinese). | |
40 | 何磊, 程文渊, 宋刚, 等. 大型舰船海水管路系统技术成熟度评价研究[J]. 舰船科学技术, 2021, 43(9): 84-87. |
HE L, CHENG W Y, SONG G, et al. Technology readiness assessment for large ship seawater piping systems[J]. Ship Science and Technology, 2021, 43(9): 84-87 (in Chinese). | |
41 | 吴继承. 技术成熟度工具在核电型号研发中的应用探索[J]. 价值工程, 2022, 41(23): 57-60. |
WU J C. Application exploration of technology maturity tool in nuclear power model development[J]. Value Engineering, 2022, 41(23): 57-60 (in Chinese). | |
42 | 王静, 沈敏圣, 刘楠, 等. 大科学装置的成熟度评估方法探索[J]. 项目管理技术, 2019, 17(10): 59-62. |
WANG J, SHEN M S, LIU N, et al. Exploration of maturity evaluation method in scientific apparatus[J]. Project Management Technology, 2019, 17(10): 59-62 (in Chinese). | |
43 | 国家市场监督管理总局, 国家标准化管理委员会. 新材料技术成熟度等级划分及定义: [S]. 北京: 中国标准出版社, 2018. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Classification and definition of the technology readiness levels for new materials: [S]. Beijing: Standards Press of China, 2018 (in Chinese). | |
44 | 国家市场监督管理总局, 国家标准化管理委员会. 航天工程技术成熟度评价指南: [S]. 北京: 中国标准出版社, 2021. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Guideline of technology readiness assessment for aerospace engineering: [S]. Beijing: Standards Press of China, 2021 (in Chinese). |
[1] | Tingyu GUO, Ming YAN, Chunlei XIE. Aerodynamic characteristics of aggregation-separation aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730596-730596. |
[2] | Liping WANG, Fuxin WANG, Hong LIU. Research progress on simulation methods of drop diameter distribution in supercooled large drop icing conditions [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730570-730570. |
[3] | Chao AN, Rui ZHAO, Changchuan XIE, Chao YANG. Reduced-order modeling and aeroelastic analysis of geometrically nonlinear structures of large flexible wings [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730569-730569. |
[4] | Hao HE, Peng WANG. Integrated guidance and control method for high-speed morphing wing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730692-730692. |
[5] | Dapeng ZHOU, Xiaolei QU. Knowledge-based intelligent pigeon-inspired optimization of carrier-based aircraft landing control [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730801-730801. |
[6] | Kai AN, Wei HUANG, Zhenguo WANG, Xiaoping XU, Yushan MENG. Knowledge atlas analysis of AI-driven multidisciplinary development of hypersonic aircrafts [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730566-730566. |
[7] | Changhao LIU, Yihua CAO, Xiaomeng MEI, Maosheng WANG, Guanglin ZHANG. Transport effectiveness evaluation of high⁃speed helicopters [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 530182-530182. |
[8] | Weiguo ZHANG, Min TANG, Jie WU, Xianmin PENG, Guichuan ZHANG, Bowen NIE, Liangquan WANG, Chaoqun LI. Overview of wind tunnel test research on tiltrotor aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 530114-530114. |
[9] | Weikang HUANG, Zhuoran ZHANG, Xingya DA, Peibo YUAN, Huamin GAO. Thermal characteristics of dual drive motors for high speed counter⁃rotating ducted fan [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 129048-129048. |
[10] | Junfu LI, Qing CHEN, Wei WANG, Zhonghua HAN, Yuting TAN, Yulin DING, Lu XIE, Jianling QIAO, Ke SONG, Junqiang AI. Design of low sonic boom high efficiency layout for advanced supersonic civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629613-629613. |
[11] | Shusheng CHEN, Muliang JIA, Yanxu LIU, Zhenghong GAO, Xinghao XIANG. Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629595-629595. |
[12] | Shengxiang TONG, Zhiwei SHI, Xi GENG, Lishuang WANG, Zhikun SUN, Qichang CHEN. Combinable samara aircraft and controlled separation technique [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629590-629590. |
[13] | Chao AN, Guixi HUO, Yang MENG, Changchuan XIE, Chao YANG. Aerodynamic modeling methods and influence of layout parameters for wingtip⁃hinged multi⁃body combined UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629587-629587. |
[14] | Liu LIU, Xianhong XIANG, Yufei ZHANG, Haixin CHEN, Chuang WEI, Jian ZHU, Pu YANG. A high lift-to-drag ratio unconventional blended-wing-body aerodynamic configuration with swallow tail [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629630-629630. |
[15] | Yanhua ZHANG, Dengcheng ZHANG, Zhangwen ZHOU, Yuchang LEI, Lin LI. Concept and design of virtual rudder surface aircraft based on circulation control: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629608-629608. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341