DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehi-cle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1-18.[2] WU T C, WANG H L, LIU Y H, et al. Learning-based interfered fluid avoidance guidance for hypersonic reentry vehicles with multiple constraints[J]. ISA Transactions, 2023.[3] 王铮, 邢晓露, 闫天, 等. 高超声速飞行器突防制导的发展现状与未来发展方向[J]. 飞航导弹, 2021, (7): 18-24+67. WANG Z, XING X L, YAN T, et al. Development sta-tus and future development direction of penetration guidance for hypersonic vehicle[J]. Aerospace Tech-nology, 2021, (7): 18-24+67 (in Chinese).[4] ZHANG Y, ZHANG R, LI H F. Online Path Decision of No-Fly Zones Avoidance for Hypersonic Vehicles Based on a Graph Attention Network[J]. IEEE Trans-actions on Aerospace and Electronic Systems, 2023.[5] 余跃, 王宏伦. 基于深度学习的高超声速飞行器再入预测校正容错制导[J]. 兵工学报, 2020, 41(04): 656-669.YU Y, WANG H L. Deep learning based reentry pre-dictor-corrector fault-tolerant guidance for hypersonic vehicles[J]. Acta Armamentarii, 2020, 41(04): 656-669 (in Chinese).[6] LU P. Entry Guidance: A Unified Method[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 713-728.[7] XUE S B, LU P. Constrained predictor-corrector entry guidance[J]. Journal of guidance, control, and dy-namics, 2010, 33(4): 1273-1281.[8] CHENG L, JIANG F H, WANG Z B, et al. Multicon-strained Real-Time Entry Guidance Using Deep Neu-ral Networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 325-340.[9] 郭建国, 梁乐成, 周敏, 等, 高速飞行器俯冲段制导控制一体化综述[J]. 航空兵器, 2023, 30(1): 1-10.GUO J G, LIANG L C, ZHOU M, et al. Overview of Integrated Guidance and Control for Hypersonic Ve-hicles in Dive Phase[J]. Aero Weaponry, 2023, 30(1): 1-10 (in Chinese).[10] HOU M Z, LIANG X L, DUAN G R. Adaptive block dynamic surface control for integrated missile guid-ance and autopilot[J]. Chinese Journal of Aeronautics, 2013, 26(3):741-750.[11] LIU X D, HUANG W W, DU L F. An integrated guid-ance and control approach in three-dimensional space for hypersonic missile constrained by impact an-gles[J]. ISA Transection, 2017, 66:164-175.[12] BAO C Y, WANG P, Tang G J. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase[J]. Chinese Journal of Aeronautics, 2021, 34(5): 535–553.[13] YAN B B, LIU R, DAI P, et al. A rapid penetration trajectory optimization method for hypersonic vehi-cles[J]. International Journal of Aerospace Engineer-ing, 2019.[14] SHEN Z P, Yu J L, Dong X W, et al. Penetration trajec-tory optimization for the hypersonic gliding vehicle encountering two interceptors[J]. Aerospace Science and Technology, 2022, 121: 107363.[15] 邵会兵. 滑翔飞行器滑翔能力智能预示与多约束制导研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.SHAO H B. Gliding manoeuvrability intelligent pre-diction and multi-constrained guidance for gliding vehicles[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese).[16] JORRIS T R, COBB R G. Three-Dimensional Trajec-tory Optimization Satisfying Waypoint and No-Fly Zone Constraints[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 551-572.[17] ZHAO D J, SONG Z Y. Reentry trajectory optimiza-tion with waypoint and no-fly zone constraints using multiphase convex programming[J]. Acta Astronauti-ca, 2017, 137: 60-69.[18] LIANG Z X, LIU S Y, LI Q D, et al. Lateral entry guidance with no-fly zone constraint[J]. Aerospace Science and Technology, 2017, 60: 39-47.[19] ZHANG D, LIU L, WANG Y J. On-line reentry guid-ance algorithm with both path and no-fly zone con-straints[J]. Acta Astronautica, 2015, 117: 243-253.[20] HU Y D, GAO C S, LI J L, et al. A novel adaptive lateral reentry guidance algorithm with complex dis-tributed no-fly zones constraints[J]. Chinese Journal of Aeronautics, 2022, 35(7): 128-143.[21] 惠俊鹏, 汪韧, 郭继峰. 基于强化学习的禁飞区绕飞智能制导技术研究[J/OL]. 航空学报, (2023-02-07) [2023-05-11]. http://kns.cnki.net/kcms/detail/11.1929.v.20230206.1244.001.html.HUI J P, WANG R, GUO J F. Research of intelligent guidance for no-fly zone avoidance based on rein-forcement learning [J/OL], (2023-02-07) [2023-05-11]. http://kns.cnki.net/kcms/detail/11.1929.v.20230206.1244.001.html (in Chinese).[22] WU T C, WANG H L, YU Y, et al. Hierarchical fault-tolerant control for over-actuated hypersonic reentry vehicles[J]. Aerospace Science and Technology, 2021, 119: 107134.[23] 惠俊鹏, 汪韧, 俞启东. 基于强化学习的再入飞行器“新质”走廊在线生成技术[J]. 航空学报, 2022, 43(09): 623-635.HUI J P, WANG R, YU Q D. Research of generating new quality flight corridor for reentry aircraft based on reinforcement learning[J]. Acta Aeronautica et As-tronautica Sinica, 2022, 43(09): 623-635 (in Chinese).[24] WU J F, WANG H L, LIU Y H, et al. Learning-based fixed-wing UAV reactive maneuver control for obsta-cle avoidance[J]. Aerospace Science and Technology, 2022, 126: 107623.[25] CHEN Y D, WANG J N, WANG C Y, et al. Three-dimensional cooperative homing guidance law with field-of-view constraint[J]. Journal of Guidance, Control, and Dynamics, 2020, 43(2): 389-397.[26] CHANG J, GUO Z Y, CIESLAK J, et al. Integrated guidance and control design for the hypersonic inter-ceptor based on adaptive incremental backstepping technique[J]. Aerospace Science and Technology, 2019, 89: 318-332.[27] 吴健发, 王宏伦, 王延祥, 等. 无人机反应式扰动流体路径规划[J]. 自动化学报, 2023, 49(02): 272-287.WU J F, WANG H L, WANG Y X, et al. UAV Reac-tive Interfered Fluid Path Planning[J]. Acta Automati-ca Sinica, 2023, 49(02): 272-287 (in Chinese).[28] FUJIMOTO S, HOOF H V, MEGER D. Addressing function approximation error in actor-critic meth-ods[DB]. arXiv preprint:1802.09477, 2018.[29] 包为民, 朱建文, 张洪波, 等. 高超声速飞行器全程制导方法[M]. 北京: 科学出版社, 2021: 97-106.BAO W M, ZHU J W, ZHANG H B, et al. Full range guidance method for hypersonic vehicles[M]. Beijing: Science Press, 2021: 97-106 (in Chinese). |