[1] SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1-28. [2] UYANNA O, NAJAFI H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176: 341-356. [3] 杜善义, 方岱宁, 孟松鹤, 等. "近空间飞行器的关键基础科学问题"重大研究计划结题综述[J]. 中国科学基金, 2017, 31(2): 109-114. DU S Y,FANG D N, MENG S H, et al. Review of the achievements of major research plan on "Key fundamental scientific problems on hypersonic vehicle"[J]. Bulletin of National Natural Science Foundation of China, 2017, 31(2): 109-114 (in Chinese). [4] 龙乐豪, 蔡巧言, 王飞, 等. 重复使用航天运输系统发展与展望[J]. 科技导报, 2018, 36(10): 84-92. LONG L H, CAI Q Y, WANG F, et al. Development of reusable space transportation technologies[J]. Science & Technology Review, 2018, 36(10): 84-92 (in Chinese). [5] DARYABEIGI K. Thermal analysis and design optimization of multilayer insulation for reentry aerodynamic heating[J]. Journal of Spacecraft and Rockets, 2002, 39(4): 509-514. [6] XIE G N, WANG Q, SUNDEN B, et al. Thermomechanical optimization of lightweight thermal protection system under aerodynamic heating[J]. Applied Thermal Engineering, 2013, 59(1-2): 425-434. [7] 李宇峰, 贺利乐, 张璇, 等. 典型热防护壁板结构的热模态分析[J]. 应用力学学报, 2017, 34(1): 43-49, 194. LI Y F, HE L L, ZHANG X, et al. Thermal modal analysis of typical thermo-defend panel structure[J]. Chinese Journal of Applied Mechanics, 2017, 34(1): 43-49, 194 (in Chinese). [8] 解维华, 韩国凯, 孟松鹤, 等. 返回舱/空间探测器热防护结构发展现状与趋势[J]. 航空学报, 2019, 40(8): 022792. XIE W H, HAN G K, MENG S H, et al. Development status and trend of thermal protection structure for return capsules and space probes[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 022792 (in Chinese). [9] YANG J, CHANG F K. Detection of bolt loosening in C-C composite thermal protection panels: I. Diagnostic principle[J]. Smart Materials and Structures, 2006, 15(2): 591-599. [10] KUNDU T, DAS S, JATA K V. Health monitoring of a thermal protection system using lamb waves[J]. Structural Health Monitoring, 2009, 8(1): 29-45. [11] GYEKENYESI A L, MARTIN R E, MORSCHER G N, et al. Impedance-based structural health monitoring of a ceramic matrix composite[J]. Journal of Intelligent Material Systems and Structures, 2009, 20(7): 875-882. [12] GUO Z Q, KIM K, LANZARA G, et al. Micro-fabricated, expandable temperature sensor network for macro-scale deployment in composite structures[C]//2011 Aerospace Conference. Piscataway: IEEE Press, 2011: 1-6. [13] YEE C, RAY M, TANG F, et al. Ablation recession sensor for ablative materials based on ultraminiature thermocouples[J]. Journal of Spacecraft and Rockets, 2014, 51(6): 1789-1796. [14] MENG S H, YANG Q, XIE W H, et al. Structure redesign of the integrated thermal protection system and fuzzy performance evaluation[J]. AIAA Journal, 2016, 54(11): 3598-3607. [15] SUBRAHMANYAM P, RASKY D. Entry, descent, and landing technological barriers and crewed MARS vehicle performance analysis[J]. Progress in Aerospace Sciences, 2017, 91: 1-26. [16] 袁慎芳, 刘凌峰, 邱雷, 等. C/C热防护结构弹性波仿真分析方法及损伤对弹性波的影响[J]. 复合材料学报, 2019, 36(10): 2448-2457. YUAN S F, LIU L F, QIU L, et al. Elastic wave simulation analysis method and damage effect on elastic wave in C/C thermal protection structures[J]. Acta Materiae Compositae Sinica, 2019, 36(10): 2448-2457 (in Chinese). [17] 张佳奇, 刘明辉, 刘科海, 等. 基于超声导波的返回舱热防护结构烧蚀层厚度监测方法[J]. 航天器环境工程, 2019, 36(5): 487-494. ZHANG J Q, LIU M H, LIU K H, et al. A method based on ultrasonic guidedwavefor monitoringthe thickness of ablation layer for thermal protection structures of re-entry capsules[J]. Spacecraft Environment Engineering, 2019, 36(5): 487-494 (in Chinese). [18] 袁慎芳. 结构健康监控[M]. 北京: 国防工业出版社, 2007. YUAN S F. Structural health monitoring and damage control[M]. Beijing: National Defense Industry Press, 2007 (in Chinese). [19] SHEN Y F, GIURGIUTIU V. WaveFormRevealer: An analytical framework and predictive tool for the simulation of multi-modal guided wave propagation and interaction with damage[J]. Structural Health Monitoring, 2014, 13(5): 491-511. [20] YUAN S F, REN Y Q, QIU L, et al. A multi-response-based wireless impact monitoring network for aircraft composite structures[J]. IEEE Transactions on Industrial Electronics, 2016, 63(12): 7712-7722. [21] MITRA M, GOPALAKRISHNAN S. Guided wave based structural health monitoring: A review[J]. Smart Materials and Structures, 2016, 25(5): 053001. [22] MEI H F, YUAN S F, QIU L, et al. Damage evaluation by a guided wave-hidden Markov model based method[J]. Smart Materials and Structures, 2016, 25(2): 025021. [23] YUAN S F, CHEN J, YANG W B, et al. On-line crack prognosis in attachment lug using Lamb wave-deterministic resampling particle filter-based method[J]. Smart Materials and Structures, 2017, 26(8): 085016. [24] QIU L, YAN X X, LIN X D, et al. Multiphysics simulation method of lamb wave propagation with piezoelectric transducers under load condition[J]. Chinese Journal of Aeronautics, 2019, 32(5): 1071-1086. [25] LIU X S, FU Q G, WANG H, et al. Microstructure, thermophysical property and ablation behavior of high thermal conductivity carbon/carbon composites after heat-treatment[J]. Chinese Journal of Aeronautics, 2020, 33(5): 1541-1548. [26] IHN J B, CHANG F K. Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics[J]. Smart Materials and Structures, 2004, 13(3): 609-620. [27] CHO H, LISSENDEN C J. Structural health monitoring of fatigue crack growth in plate structures with ultrasonic guided waves[J]. Structural Health Monitoring, 2012, 11(4): 393-404. [28] CHEN J, YUAN S F, JIN X. On-line prognosis of fatigue cracking via a regularized particle filter and guided wave monitoring[J]. Mechanical Systems and Signal Processing, 2019, 131: 1-17. [29] MICHAELS J E. Detection, localization and characterization of damage in plates with an array of spatially distributed ultrasonic sensors[J]. Smart Materials and Structures, 2008, 17(3): 035035. [30] TORKAMANI S, ROY S, BARKEY M E, et al. A novel damage index for damage identification using guided waves with application in laminated composites[J]. Smart Materials and Structures, 2014, 23(9): 095015. [31] QIU L, YUAN S F, CHANG F K, et al. On-line updating Gaussian mixture model for aircraft wing spar damage evaluation under time-varying boundary condition[J]. Smart Materials and Structures, 2014, 23(12): 125001. [32] LIU M L, WANG Q, ZHANG Q M, et al. Hypervelocity impact induced shock acoustic emission waves for quantitative damage evaluation using miniaturized piezoelectric sensor network[J]. Chinese Journal of Aeronautics, 2019, 32(5): 1059-1070. [33] 贺平, 王玲玲, 莫纪安, 等. 烧蚀材料烧蚀试验方法: GJB 323B—2018[S]. 北京: 国防科工委军标出版社, 2018. HE P, WANG L L, MO J A, et al. Test method for abla-tion of ablators: GJB 323B—2018[S]. Beijing: Military Standard Press of Commission of Science, Technology and Industry for National Defense, 2018 (in Chinese). [34] QIU L, YUAN S F, WANG Q, et al. Design and experiment of PZT network-based structural health monitoring scanning system[J]. Chinese Journal of Aeronautics, 2009, 22(5): 505-512. |