ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2022, Vol. 43 ›› Issue (6): 527590-527590.doi: 10.7527/S1000-6893.2022.27590
• Reviews • Previous Articles
SUN Cong
Received:
2022-06-07
Revised:
2022-06-20
Online:
2022-06-15
Published:
2022-06-17
CLC Number:
SUN Cong. Development status, challenges and trends of strength technology for hypersonic vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 527590-527590.
[1] 陈冰, 郑勇, 章后甜,等.临近空间高超声速飞行器导航技术发展综述[J].飞航导弹, 2021, 12(12):57-62,68. CHEN B, ZHENG Y, ZHANG H T, et al. Review on the development of near space hypersonic vehicle navigation technology[J]. Aerodynamic Missile Journal, 2021, 12(12):57-62,68(in Chinese). [2] 蔡亚梅, 汪立萍. 美国的高超声速飞行器发展计划及关键技术分析[J]. 航天制造技术, 2010(6):4-7. CAI Y M, WANG L P. Hypersonic programs in USA and key technologies analysis[J]. Aerospace Manufacturing Technology, 2010(6):4-7(in Chinese). [3] 牛文, 车易. DARPA完成HTV-2飞行器第二次试飞[J]. 飞航导弹, 2011(9):9. NIU W, CHE Y. DARPA completes the second test flight of HTV-2 aircraft[J]. Aerodynamic Missile Journal, 2011(9):9(in Chinese). [4] 王骥飞. 高超声速飞行器气动外形一体化设计方法研究[D]. 西安:西北工业大学, 2018. WANG J F. Research on integration design methodology of aerodynamic shape for hypersonic aircrafts[D]. Xi'an:Northwestern Polytechnical University, 2018(in Chinese). [5] MOSES P L, RAUSCH V L, NGUYEN L T, et al. NASA hypersonic flight demonstrators-Overview, status, and future plans[J]. Acta Astronautica, 2004, 55(3-9):619-630. [6] KAZMAR R. Airbreathing hypersonic propulsion at Pratt & Whitney-overview[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston:AIAA,2005:3256. [7] PARKS S, WALDMAN B. Flight testing hypersonic vehicles-The X-30 and beyond[C]//2nd International Aerospace Planes Conference. Reston:AIAA, 1990:5229. [8] MURPHY K J, NOWAK R J, THOMPSON R A, et al. X-33 hypersonic aerodynamic characteristics[J]. Journal of Spacecraft and Rockets, 2001, 38(5):670-683. [9] BERRY S A, HORVATH T J, HOLLIS B R, et al. X-33 hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2001, 38(5):646-657. [10] 王蒙, 张进, 尚绍华. X-43A飞行器的设计与制造[J]. 飞航导弹, 2007(6):24-31. WANG M, ZHANG J, SHANG S H. Design and manufacture of X-43A aircraft[J]. Winged Missiles Journal, 2007(6):24-31(in Chinese). [11] BAHM C, BAUMANN E, MARTIN J, et al. The X-43A hyper-X Mach 7 flight 2 guidance, navigation, and control overview and flight test results[C]//AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston:AIAA, 2005:3275. [12] HANK J, MURPHY J, MUTZMAN R. The X-51A scramjet engine flight demonstration program[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2008:2540. [13] 魏毅寅, 张冬青, 叶蕾, 等. 美国X-51A飞行器完成首次动力飞行试验[J]. 飞航导弹, 2010(6):2-7, 97, 99. WEI Y Y, ZHANG D Q, YE L, et al. US X51-A aircraft completes the first power flight test[J]. Aerodynamic Missile Journal, 2010(6):2-7, 97, 99(in Chinese). [14] 李益翔. 美国高超声速飞行器发展历程研究[D]. 哈尔滨:哈尔滨工业大学, 2016. LI Y X. Research on the development history of US hypersonic aircrafts[D]. Harbin:Harbin Institute of Technology, 2016(in Chinese). [15] WALKER S, SHERK J, SHELL D, et al. The DARPA/AF falcon program:The hypersonic technology vehicle #2(HTV-2) flight demonstration phase[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2008. [16] 甄华萍, 蒋崇文. 高超声速技术验证飞行器HTV-2综述[J]. 飞航导弹, 2013(6):7-13. ZHEN H P, JIANG C W. Overview of hypersonic technology validation vehicle HTV-2[J]. Aerodynamic Missile Journal, 2013(6):7-13(in Chinese). [17] 吕琳琳, 王慧. 俄罗斯Yu-71高超声速助推滑翔飞行器[J]. 现代军事, 2015(11):76-80. LYU L L, WANG H. Russian Yu-71 hypersonic boost-glide vehicle[J]. Conmilit, 2015(11):76-80(in Chinese). [18] 刘薇, 龚海华. 国外高超声速飞行器发展历程综述[J]. 飞航导弹, 2020(3):20-27, 59. LIU W, GONG H H. Review of hypersonic vehicle development abroad[J]. Aerodynamic Missile Journal, 2020(3):20-27, 59(in Chinese). [19] 姜鹏, 匡宇, 谢小平, 等. 国外高超声速飞行器研究现状及发展趋势[J]. 飞航导弹, 2017(7):19-24. JIANG P, KUANG Y, XIE X P, et al. Research status and development trend of hypersonic vehicle abroad[J]. Aerodynamic Missile Journal, 2017(7):19-24(in Chinese). [20] RAKOW J F, WAAS A M. Thermal buckling of metal foam sandwich panels for convective thermal protection systems[J]. Journal of Spacecraft and Rockets, 2005, 42(5):832-844. [21] TZONG G, JACOBS R, LIGUORE S. Air vehicle integration and technology research (aviatr) task order 0015:Predictive capability for hypersonic structural response and life prediction:Phase 1-identification of knowledge gaps, volume 1:Nonproprietary version[R]. Chicago:The Boeing Company, 2010. [22] 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京:科学出版社, 2012:12-167. CAI G B, XU D J. Hypersonic vehicle technology[M]. Beijing:Science Press, 2012:12-167(in Chinese). [23] 杨亚政, 杨嘉陵, 方岱宁. 高超声速飞行器热防护材料与结构的研究进展[J]. 应用数学和力学, 2008, 29(1):47-56. YANG Y Z, YANG J L, FANG D N. Research progress on the thermal protection materials and structures in hypersonic vehicles[J]. Applied Mathematics and Mechanics, 2008, 29(1):47-56(in Chinese). [24] 王璐, 王友利. 高超声速飞行器热防护技术研究进展和趋势分析[J]. 宇航材料工艺, 2016, 46(1):1-6. WANG L, WANG Y L. Research progress and trend analysis of hypersonic vehicle thermal protection technology[J]. Aerospace Materials & Technology, 2016, 46(1):1-6(in Chinese). [25] GLASS D. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles[C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston:AIAA, 2008. [26] SAWYER J W, HODGE J, MOORE B, et al. Aerothermal test of thermal protection systems for v33 reusable launch vehicle[C]//AIP Conference Proceedings, 1999, 458(1):1087-1100. [27] 陈新. 基于石英灯阵列的大梯度变化热环境模拟试验设计方法[D]. 哈尔滨:哈尔滨工业大学, 2021. CHEN X. Experiment design method for large gradient thermal environment employing quartz lamp array[D]. Harbin:Harbin Institute of Technology, 2021(in Chinese). [28] 孟松鹤, 杨强, 霍施宇, 等. 一体化热防护技术现状和发展趋势[J]. 宇航学报, 2013, 34(10):1295-1302. MENG S H, YANG Q, HUO S Y, et al. State-of-arts and trend of integrated thermal protection systems[J]. Journal of Astronautics, 2013, 34(10):1295-1302(in Chinese). [29] BAPANAPALLI S, MARTINEZ O, GOGU C, et al. (student paper) analysis and design of corrugated-core sandwich panels for thermal protection systems of space vehicles[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2006:1942. [30] WEI K, HE R J, CHENG X M, et al. A lightweight, high compression strength ultra high temperature ceramic corrugated panel with potential for thermal protection system applications[J]. Materials & Design, 2015, 66:552-556. [31] ZHANG J J, YIN J X, MA S X, et al. Experimental and numerical studies of the thermal performance of a metallic lattice structure filled with phase-change material[J]. Journal of Energy Engineering, 2017, 143(5):1-10. [32] GRADY J, ROBINSON C.CMC/EBC research at NASA glenn in 2020:Recent progress and plans[C]//International Conference and Exposition on Advanced Ceramics and Composites (ICACC 2020), 2020. [33] 陈波. 三维编织C/C复合材料高温力学行为及寿命预测模型研究[D]. 南京:南京航空航天大学, 2018. CHEN B. Research on mechanical behavior and fatigue prediction method of 3D braided carbon/carbon composites at elevated temperature[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018(in Chinese). [34] CULLER A J. Coupled fluid-thermal-structural modeling and analysis of hypersonic flight vehicle structures[D]. Columbus:The Ohio State University, 2010. [35] LIU L, DAI G Y, ZENG L, et al. Experimental model design and preliminary numerical verification of fluid-thermal-structural coupling problem[J]. AIAA Journal, 2019, 57(4):1715-1724. [36] 董维中, 高铁锁, 丁明松, 等. 高超声速飞行器表面温度分布与气动热耦合数值研究[J]. 航空学报, 2015, 36(1):311-324. DONG W Z, GAO T S, DING M S, et al. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):311-324(in Chinese). [37] MILLER B, CROWELL A, MCNAMARA J. Modeling and analysis of shock impingements on thermo-mechanically compliant surface panels[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference.Reston:AIAA, 2012:1548. [38] 周印佳, 孟松鹤, 解维华, 等. 高超声速飞行器热环境与结构传热的多场耦合数值研究[J]. 航空学报, 2016, 37(9):2739-2748. ZHOU Y J, MENG S H, XIE W H, et al. Multi-field coupling numerical analysis of aerothermal environment and structural heat transfer of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2739-2748(in Chinese). [39] 孙学文. 高超声速气动热预测及热防护材料/结构响应研究[D]. 北京:北京科技大学, 2020. SUN X W. Prediction of the aerodynamic heating and the response of thermal protection material/structure in hypersonic[D]. Beijing:University of Science and Technology Beijing, 2020(in Chinese). [40] 谭光辉, 李秋彦, 邓俊. 热环境下结构固有振动特性试验及分析[J]. 航空学报, 2016, 37(S1):32-37. TAN G H, LI Q Y, DENG J. Test and analysis of natural modal characteristics of a wing model with thermal effect[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(Sup 1):32-37(in Chinese). [41] 吴志刚, 惠俊鹏, 杨超. 高超声速下翼面的热颤振工程分析[J]. 北京航空航天大学学报, 2005, 31(3):270-273. WU Z G, HUI J P, YANG C. Hypersonic aerothermoelastic analysis of wings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(3):270-273(in Chinese). [42] BEHNKE M, SHARMA A, PRZEKOP A, et al. Thermal-acoustic analysis of a metallic integrated thermal protection system structure[C]//51 st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA, 2010. [43] MONTGOMERY J. Modeling of aircraft structural-acoustic response to complex sources using coupled FEM/BEM analyses[C]//10th AIAA/CEAS Aeroacoustics Conference. Reston:AIAA, 2004. [44] GORDON R, HOLLKAMP J. Reduced-order models for acoustic response prediction[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2011. [45] LIGUORE S L, PITT D M, WHITE E V. Air vehicle technology integration program (AVTIP). delivery order 0086:Applied nonlinear low order response prediction methods evaluation[R]. Chicago:The Boeing Company, 2009. [46] LIGUORE S L, PITT D M, THOMAS M J, et al.Air vehicle integration and technology research (AVIATR). Delivery order 0013:Nonlinear, low-order/reduced-order modeling applications and demonstration:AFRL-RB-WP-TR-2011-3102[R]. Chicago:The Boeing Company, 2011. [47] LIGUORE S, THOMAS M, PITT D. Application and demonstration of nonlinear reduced order modeling (NLROM) for thermal/acoustic response[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 2012. [48] ZUCHOWSKI B. Air vehicle integration and technology research (aviatr). delivery order 0023:Predictive capability for hypersonic structural response and life prediction:Phase 2-detailed design of hypersonic cruise vehicle hot-structure[R]. Lockheed Martin Aeronautics Co Palmdale Ca, 2012. [49] 邹学锋, 郭定文, 张昕, 等. 声/热/静联合载荷下钛板结构响应特性研究[J]. 推进技术, 2019, 40(5):1136-1143. ZOU X F, GUO D W, ZHANG X, et al. Study on response characteristcs of titanium panel under combined thermal/acoustic/static loadings[J]. Journal of Propulsion Technology, 2019, 40(5):1136-1143(in Chinese). [50] 张正平. 飞行器薄壁结构热噪声响应及动强度研究[J]. 强度与环境, 2019, 46(1):1-7. ZHANG Z P. Dynamic response and strength of aerocraft thin-panel under thermal-acoustic loads[J]. Structure & Environment Engineering, 2019, 46(1):1-7(in Chinese). [51] 李跃明, 耿谦. 热结构的声振特性[M]. 北京:科学出版社, 2021. LI Y M, GENG Q. Acoustic vibration characteristics of thermal structures[M]. Beijing:Science Press, 2021(in Chinese). [52] 沙云东, 艾思泽, 张家铭, 等. 热流环境下薄壁结构随机振动响应计算与疲劳分析[J]. 航空动力学报, 2020, 35(7):1402-1412. SHA Y D, AI S Z, ZHANG J M, et al. Random vibration response calculation and fatigue analysis of thin-walled structures under heat flux environment[J]. Journal of Aerospace Power, 2020, 35(7):1402-1412(in Chinese). [53] 杨智春, 刘丽媛, 王晓晨. 高超声速飞行器受热壁板的气动弹性声振分析[J]. 航空学报, 2016, 37(12):3578-3587. YANG Z C, LIU L Y, WANG X C. Analysis of aeroelastic vibro-acoustic response for heated panel of hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3578-3587(in Chinese). [54] 邹学锋, 潘凯, 燕群, 等. 多场耦合环境下高超声速飞行器结构动强度问题综述[J]. 航空科学技术, 2020, 31(12):3-15. ZOU X F, PAN K, YAN Q, et al. Overview of dynamic strength of hypersonic vehicle structure in multi-field coupling environment[J]. Aeronautical Science & Technology, 2020, 31(12):3-15(in Chinese). [55] 王乐善, 巨亚堂, 吴振强, 等. 辐射加热方法在结构热试验中的作用与地位[J]. 强度与环境, 2010, 37(5):58-64. WANG L S, JU Y T, WU Z Q, et al. Status and significance of radiation heating method in thermal-structural testing[J]. Structure & Environment Engineering, 2010, 37(5):58-64(in Chinese). [56] 王建军, 王智勇, 栾叶君, 等. 高超声速飞行器热结构力热氧试验技术概述[J]. 强度与环境, 2018, 45(2):59-64. WANG J J, WANG Z Y, LUAN Y J, et al. A review of mechanical-thermal-oxygen composite test technology for hot structure of hypersonic aircraft[J]. Structure & Environment Engineering, 2018, 45(2):59-64(in Chinese). [57] 邹学锋, 郭定文, 潘凯, 等. 综合载荷环境下高超声速飞行器结构多场联合强度试验技术[J]. 航空学报, 2018, 39(12):222326. ZOU X F, GUO D W, PAN K, et al. Test technique for multi-load combined strength of hypersonic vehicle structure under complex loading environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):222326(in Chinese). [58] ZIMMERMANN J W, HILMAS G E, FAHRENHOLTZ W G. Thermal shock resistance of ZrB2 and ZrB2-30% SiC[J]. Materials Chemistry and Physics, 2008, 112(1):140-145. [59] OPEKA M M, TALMY I G, WUCHINA E J, et al. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds[J]. Journal of the European Ceramic Society, 1999, 19(13-14):2405-2414. [60] WUCHINA E, OPEKA M, CAUSEY S, et al. Designing for ultrahigh-temperature applications:the mechanical and thermal properties of HfB2, HfCx, HfNx and Hf(N)[J]. Journal of Materials Science, 2004, 39(19):5939-5949. [61] RICHIE C, RISH F. Strength integrity of the acreage thermal protection system for the Space Shuttle Orbiter[C]//23rd Structures, Structural Dynamics and Materials Conference. Reston:AIAA, 1982. [62] 李志强, 吴振强, 魏龙, 等. 热防护系统结构完整性试验评估技术研究进展[J]. 强度与环境, 2020, 47(5):19-27. LI Z Q, WU Z Q, WEI L, et al. Advances of structural integrity test evaluation techniques for thermal protection systems[J]. Structure & Environment Engineering, 2020, 47(5):19-27(in Chinese). [63] STEPHENS C A, HUDSON L D, PIAZZA A. Overview of an advanced hypersonic structural concept test program:NASA-2008-561[R].Washington,D.C.:NASA,2008. [64] SPIVEY N D. High-temperature modal survey of a hot-structure control surface:NASA/TM-2011-215965[R]. Washington,D.C.:NASA,2011. [65] HUDSON L D, STEPHENS C A.X-37 C/Si C ruddervator subcomponent test program:DFRC-1069[R]. Washington,D.C.:NASA,1992. [66] DEANGELIS V M, ANDERSON K F. Thermal-structural test facilities at NASA Dryden:NASA-TM-104249[R]. Washington,D.C.:NASA, 1992. [67] WANG L L, LIANG J, FANG G D, et al. Effects of strain rate and temperature on compressive strength and fragment size of ZrB2-SiC-graphite composites[J]. Ceramics International, 2014, 40(4):5255-5261. [68] 武保华, 刘春立, 张涛, 等. 碳/碳复合材料超高温力学性能测试研究[J]. 宇航材料工艺, 2001, 31(6):67-71, 76. WU B H, LIU C L, ZHANG T, et al. Research on mechanical properties test of C/C composites at ultra high temperature[J]. Aerospace Materials & Technology, 2001, 31(6):67-71, 76(in Chinese). [69] 韩红梅, 李贺军, 李克智, 等. 高温对碳/碳复合材料性能影响的研究[J]. 西北工业大学学报, 2003, 21(3):352-355. HAN H M, LI H J, LI K Z, et al. Effect of high temperature on mechanical behavior of 3D braided C/C composites[J]. Journal of Northwestern Polytechnical University, 2003, 21(3):352-355(in Chinese). [70] GUO W M, YANG Z G, ZHANG G J. High-temperature deformation of ZrB2 ceramics with WC additive in four-point bending[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(6):705-709. [71] ZHANG R B, CHENG X M, FANG D N, et al. Ultra-high-temperature tensile properties and fracture behavior of ZrB2-based ceramics in air above 1500℃[J]. Materials & Design (1980-2015), 2013, 52:17-22. [72] 王玲玲. ZrB2基超高温陶瓷高温本构关系及断裂行为研究[D]. 哈尔滨:哈尔滨工业大学, 2015. WANG L L. High temperature constitutive relationship and fracture behavior of ZrB2-based ultra high temperature ceramic[D]. Harbin:Harbin Institute of Technology, 2015(in Chinese). [73] 吴大方, 赵寿根, 潘兵, 等. 高速巡航导弹翼面结构热-振联合试验研究[J]. 航空学报, 2012, 33(9):1633-1642. WU D F, ZHAO S G, PAN B, et al. Research on thermal-vibration joint test for wing structure of high-speed cruise missile[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1633-1642(in Chinese). [74] 吴大方, 赵寿根, 潘兵, 等. 高速飞行器中空翼结构高温热振动特性试验研究[J]. 力学学报, 2013, 45(4):598-605. WU D F, ZHAO S G, PAN B, et al. Experimental study on high temperature thermal-vibration characteristics for hollow wing structure of high-speed flight vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4):598-605(in Chinese). [75] 李晓东, 杨文岐, 刘浩. 基于纯随机激励的热模态试验技术研究[J]. 强度与环境, 2015, 42(2):52-56. LI X D, YANG W Q, LIU H. The study of thermo-modal test technique based on true-random excitation[J]. Structure & Environment Engineering, 2015, 42(2):52-56(in Chinese). |
[1] | Weihong ZHANG, Changhong TANG. Lightweighting of aerospace and aeronautical equipment: Challenges and perspectives [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529965-529965. |
[2] | Bo YANG, He YU, Zichen FAN. Micro-energy analysis method for time-varying error of aero-optical effects [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128703-128703. |
[3] | Weilin NI, Yonghai WANG, Cong XU, Fenghua CHI, Haizhao LIANG. Cooperative game guidance method for hypersonic vehicles based on reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729400-729400. |
[4] | Cheng ZHANG, Haoyuan REN, Tailong SHI, Wendi DAI. Multidisciplinary full-time coupling methods of folding fin containing non-linear connections and their applications [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729461-729461. |
[5] | Ping MA, Ning ZHANG, Anhua SHI, Zhefeng YU, Shichang LIANG, Jie HUANG. Transmission characteristics of typical band microwave in experiment⁃simulated plasma [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729476-729476. |
[6] | Yuemeng MA, Ming LIU, Ding YANG, Ming YANG, Mingang ZHANG, Yajie GE. Prescribed performance and anti⁃noise control of near space vehicle with thermal constraint [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729390-729390. |
[7] | Haoyu CHEN, Binwen WANG, Qiaozhi SONG, Xiaodong LI. Thermal flutter ground simulation test [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 227295-227295. |
[8] | Ziyi WANG, Weiwei ZHANG, Lei LIU, Xiaofeng YANG. Reduced order aerothermoelastic framework suitable for complex flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126807-126807. |
[9] | Xunliang YAN, Peichen WANG, Shumei WANG, Yuxuan YANG, Kuan WANG. Rapid robust trajectory optimization for RBCC vehicle ascent based on polynomial chaos [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528349-528349. |
[10] | Zhikun SUN, Zhiwei SHI, Weilin ZHANG, Zheng LI, Qijie SUN. Effect of plasma actuator on lift-drag characteristics of high-speed airfoil [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 23-39. |
[11] | ZHANG Xingyu, GAO Zhenghong, LEI Tao, MIN Zhihao, LI Weiling, ZHANG Xiaobin. Ground test on aerodynamic-propulsion coupling characteristics of distributed electric propulsion aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 125389-125389. |
[12] | ZHENG Hui, QIU Lei, YUAN Shenfang, YANG Xiaofei, LU Xulong, XUE Zhaopeng. Experimental method of guided wave monitoring for high temperature airflow damage of C/C thermal protection structures [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 225659-225659. |
[13] | LI Chaolong, XIA Zhixun, MA Likun, ZHAO Xiang, LUO Zhenbing, DUAN Yifan. Experiment on performance of solid rocket scramjet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 126075-126075. |
[14] | LUO Shibin, MIAO Zhichao, SONG Jiawen. Influencing factors of active cooling at leading edge of hypersonic vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 627023-627023. |
[15] | GAO Chang, LI Zhengzhou, HUANG Jiangtao, HE Yuanyuan, WU Yingchuan, LE Jialing, GUI Feng. High-accuracy aerodynamic optimization of hypersonic vehicles based on continuous adjoint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 124490-124490. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341