Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (15): 129579-129579.doi: 10.7527/S1000-6893.2023.29579
• Fluid Mechanics and Flight Mechanics • Previous Articles
Jiajun LONG1, Chenpiao LIU1, Fei QIN1, Jiale ZHANG2, Shengguan XU3, Yisheng GAO1()
Received:
2023-09-13
Revised:
2023-09-28
Accepted:
2023-10-17
Online:
2023-10-25
Published:
2023-10-24
Contact:
Yisheng GAO
E-mail:gaoyisheng@nuaa.edu.cn
Supported by:
CLC Number:
Jiajun LONG, Chenpiao LIU, Fei QIN, Jiale ZHANG, Shengguan XU, Yisheng GAO. Liutex based data-driven turbulence model correction[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 129579-129579.
1 | 阎超. 航空CFD四十年的成就与困境[J]. 航空学报, 2022, 43(10): 526490. |
YAN C. Achievements and predicaments of CFD in aeronautics in past forty years[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 526490 (in Chinese). | |
2 | MALIK M R, BUSHNELL D M. Role of computational fluid dynamics and wind tunnels in aeronautics R&D: NASA/TP-2012-217602[R]. Washington, D.C.: NASA, 2012. |
3 | HOLLAND J. Integrated field inversion and machine learning with embedded neural network training for turbulence modeling[D]. Maryland: University of Maryland, 2019. |
4 | 朱文庆, 肖志祥, 符松. 使用IDDES方法预测飞行速度对喷流噪声的影响[J]. 空气动力学学报, 2018, 36(3): 463-469. |
ZHU W Q, XIAO Z X, FU S. The effects of flight velocity on jet noise are simulated by improved delayed detached eddy simulation with the modification of grid scale definition[J]. Acta Aerodynamica Sinica, 2018, 36(3): 463-469 (in Chinese). | |
5 | LOZANO-DURÁN A, BOSE S T, MOIN P. Performance of wall-modeled LES with boundary-layer-conforming grids for external aerodynamics[J]. AIAA Journal, 2021, 60(2): 747-766. |
6 | WILCOX D C. Turbulence modeling for CFD[M]. 3rd ed. La Cãnada: DCW Industries, Inc., 2006. |
7 | HEY T. The fourth paradigm-Data-intensive scientific discovery[M]∥KURBANOĞLU S, AL U, ERDOĞAN P L, et al. Communications in computer and information science. Berlin: Springer, 2012. |
8 | DURAISAMY K, SPALART P R, RUMSEY C L. Status, emerging ideas and future directions of turbulence modeling research in aeronautics: NASA/TM-2017-219682 [R]. Washington, D.C.: NASA, 2017. |
9 | YARLANKI S, RAJENDRAN B, HAMANN H. Estimation of turbulence closure coefficients for data centers using machine learning algorithms[C]∥13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Piscataway: IEEE Press, 2012: 38-42. |
10 | LING J, TEMPLETON J. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty[J]. Physics of Fluids, 2015, 27(8): 085103. |
11 | SINGH A P, MEDIDA S, DURAISAMY K. Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils[J]. AIAA Journal, 2017, 55(7): 2215-2227. |
12 | TRACEY B D, DURAISAMY K, ALONSO J J. A machine learning strategy to assist turbulence model development[C]∥53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
13 | ZHANG Z J, DURAISAMY K. Machine learning methods for data-driven turbulence modeling[C]∥22nd AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2015. |
14 | WANG J X, WU J L, XIAO H. Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data[J]. Physical Review Fluids, 2017, 2(3): 034603. |
15 | 尹宇辉, 李浩然, 张宇飞, 等. 机器学习辅助湍流建模在分离流预测中的应用[J]. 空气动力学学报, 2021, 39(2): 23-32. |
YIN Y H, LI H R, ZHANG Y F, et al. Application of machine learning assisted turbulence modeling in flow separation prediction[J]. Acta Aerodynamica Sinica, 2021, 39(2): 23-32 (in Chinese). | |
16 | LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166. |
17 | ZHU L Y, ZHANG W W, KOU J Q, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fluids, 2019, 31(1): 015105. |
18 | 王铎, 刘超群, 蔡小舒, 等. 基于流动仿真大数据应对旋涡-湍流的研究进展[J]. 力学季刊, 2022, 43(2): 197-216. |
WANG D, LIU C Q, CAI X S, et al. Tackling vortex/turbulence challenges based on direct numerical simulation data in fluid science[J]. Chinese Quarterly of Mechanics, 2022, 43(2): 197-216 (in Chinese). | |
19 | 王述之, 战林浩, 曹博超, 等. 基于直接数值模拟数据和神经网络的湍流封闭模型构建[J]. 水动力学研究与进展(A辑), 2020, 35(2): 141-154. |
WANG S Z, ZHAN L H, CAO B C, et al. Turbulence closure model based on neural network and direct numerical simulation data[J]. Chinese Journal of Hydrodynamics, 2020, 35(2): 141-154 (in Chinese). | |
20 | 张珍, 叶舒然, 岳杰顺, 等. 基于组合神经网络的雷诺平均湍流模型多次修正方法[J]. 力学学报, 2021, 53(6): 1532-1542. |
ZHANG Z, YE S R, YUE J S, et al. A combined neural network and multiple modification strategy for Reynolds-averaged Navier-Stokes turbulence modeling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1532-1542 (in Chinese). | |
21 | DURAISAMY K, ZHANG Z J, SINGH A P. New approaches in turbulence and transition modeling using data-driven techniques[C]∥53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
22 | RUMSEY C L, COLEMAN G N, WANG L. In search of data-driven improvements to RANS models applied to separated flows[C]∥AIAA SciTech 2022 Forum. Reston: AIAA, 2022. |
23 | 何创新, 邓志文, 刘应征. 湍流数据同化技术及应用[J]. 航空学报, 2021, 42(4): 524704. |
HE C X, DENG Z W, LIU Y Z. Turbulent flow data assimilation and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524704 (in Chinese). | |
24 | 闫重阳, 张宇飞, 陈海昕. 基于离散伴随的流场反演在湍流模拟中的应用[J]. 航空学报, 2021, 42(4): 524695. |
YAN C Y, ZHANG Y F, CHEN H X. Application of field inversion based on discrete adjoint method in turbulence modeling[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524695 (in Chinese). | |
25 | 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报, 2020, 38(3): 413-431, 478. |
LIU C Q. Liutex-third generation of vortex definition and identification methods[J]. Acta Aerodynamica Sinica, 2020, 38(3): 413-431, 478 (in Chinese). | |
26 | LIU C Q, GAO Y S, DONG X R, et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems[J]. Journal of Hydrodynamics, 2019, 31(2): 205-223. |
27 | LIU C Q, GAO Y S, TIAN S L, et al. Rortex—A new vortex vector definition and vorticity tensor and vector decompositions[J]. Physics of Fluids, 2018, 30(3): 035103. |
28 | GAO Y S, LIU C Q. Rortex and comparison with eigenvalue-based vortex identification criteria[J]. Physics of Fluids, 2018, 30(8): 085107. |
29 | LIU C Q, XU H Y, CAI X S, et al. Liutex and its applications in turbulence research[M]. New York: Academic Press, 2021. |
30 | CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765-777. |
31 | EPPSB P. Review of vortex identification methods[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
32 | WANG Y Q, GAO Y S, LIU J M, et al. Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition[J]. Journal of Hydrodynamics, 2019, 31(3): 464-474. |
33 | YU Y F, SHRESTHA P, NOTTAGE C, et al. Principal coordinates and principal velocity gradient tensor decomposition[J]. Journal of Hydrodynamics, 2020, 32(3): 441-453. |
34 | SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
35 | SCHAEFER J A, CARY A W, MANI M, et al. Uncertainty quantification and sensitivity analysis of SA turbulence model coefficients in two and three dimensions[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
36 | GILES M B, PIERCE N A. An introduction to the adjoint approach to design[J]. Flow, Turbulence and Combustion, 2000, 65(3): 393-415. |
37 | BYRD R H, LU P H, NOCEDAL J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 1995, 16(5): 1190-1208. |
38 | SOMERS D M. Design and experimental results for the S809 airfoil[R]. Colorado: National Renewable Energy Laboratory, 1997. |
39 | ECONOMON T D, PALACIOS F, COPELAND S R, et al. SU2: An open-source suite for multiphysics simulation and design[J]. AIAA Journal, 2016, 54(3): 828-846. |
40 | VIRTANEN P, GOMMERS R, OLIPHANT T E, et al. SciPy 1.0: Fundamental algorithms for scientific computing in python[J]. Nature Methods, 2020, 17(3): 261-272. |
41 | PASZKE A, GROSS S, MASSA F, et al. PyTorch: An imperative style, high-performance deep learning library[EB/OL]. (2019-12-03)[2023-09-13]. |
42 | SOMERS D M. Design and experimental results for the S814 airfoil[R/OL]. (1997-01)[2023-09-13]. . |
[1] | Fei MA, Qiong ZHANG, Peijun LAI, Yidi YUE. BP neural network⁃based quantitative classification model for safety in experimental flight training [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529957-529957. |
[2] | Yude NI, Miaoyu YAN, Ruihua LIU. Short-term prediction of ionospheric TEC based on DOA-BP neural network [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328707-328707. |
[3] | Hongbo WANG, Yu ZENG, Dapeng XIONG, Yixin YANG, Mingbo SUN. Improvement of shock wave and compressibility effects in SST turbulence model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 128694-128694. |
[4] | Yanfang LIU, Jiayu SHE, Qiufan YUAN, Rui ZHOU, Naiming QI. Real⁃time small target detection networks for UAV remote sensing [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 630119-630119. |
[5] | Wentao LI, Yunqin HE, Wenbo LI, Yiyi ZHANG, Guozhu LIANG. 3D grain reverse design and shape optimization for solid rocket motor [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 529089-529089. |
[6] | Kailing ZHANG, Siyi LI, Yi DUAN, Chao YAN. Uncertainty quantification of parameters in SST turbulence model for inlet simulation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729429-729429. |
[7] | Wu LIU, Yunyan WU, Wei LIU, Mingming TIAN, Tianpeng HUANG. Re-entry robust fault tolerant attitude control for RLVs considering unknown disturbances [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727787-727787. |
[8] | Chenyang LIU, Dawei WU, Yize GUO, Xinsai LV, Jiani ZHOU, Shuyi SHAO. Robust adaptive attitude control of quadrotor with uncertain strong coupling [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727645-727645. |
[9] | Zhongzhi LI, Jinyi MA, Jianliang AI, Yiqun DONG. Fault detection and classification of aerospace sensors using deep neural networks finetuned from VGG16 [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727615-727615. |
[10] | Yu ZENG, Hongbo WANG, Mingbo SUN, Chao WANG, Xu LIU. SST turbulence model improvements: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 27411-027411. |
[11] | Zhikai WANG, Sheng CHEN, Wei FAN. Effect of neural network width on combustor emission prediction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126816-126816. |
[12] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
[13] | Honglun WANG, Yanxiang WANG, Yiheng LIU. Recovery trajectory optimization for UAV towed aerial recovery based on trajectory mapping [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 628775-628775. |
[14] | Huailu LI, Xu WANG, Xiao WANG, Tong ZHAO, Weiwei ZHANG. Aerodynamic modeling and flight simulation of maneuver flight at high angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128410-128410. |
[15] | Xiangwei ZHU, Dan SHEN, Kai XIAO, Yuexin MA, Xiang LIAO, Fuqiang GU, Fangwen YU, Kefu GAO, Jingnan LIU. Mechanisms, algorithms, implementation and perspectives of brain⁃inspired navigation [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 28569-028569. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341