Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (7): 328817-328817.doi: 10.7527/S1000-6893.2023.28817
• Electronics and Electrical Engineering and Control • Previous Articles Next Articles
Jiaxiang LI, Jianhua CHENG, Liang LI(), Zhibo NA, Chun JIA
Received:
2023-04-04
Revised:
2023-05-05
Accepted:
2023-05-30
Online:
2024-04-15
Published:
2023-05-31
Contact:
Liang LI
E-mail:liliang@hrbeu.edu.cn
Supported by:
CLC Number:
Jiaxiang LI, Jianhua CHENG, Liang LI, Zhibo NA, Chun JIA. Troposphere anomaly integrity monitoring parameters for GBAS[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 328817-328817.
1 | 谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2009. |
XIE G. Principles of GPS and receiver design[M]. Beijing: Publishing House of Electronics Industry, 2009 (in Chinese). | |
2 | DENG Z G, BENDER M, ZUS F, et al. Validation of tropospheric slant path delays derived from single and dual frequency GPS receivers[J]. Radio Science, 2011, 46( 6): RS6007. |
3 | 姚宜斌, 何畅勇, 张豹, 等. 一种新的全球对流层天顶延迟模型GZTD[J]. 地球物理学报, 2013, 56( 7): 2218- 2227. |
YAO Y B, HE C Y, ZHANG B, et al. A new global zenith tropospheric delay model GZTD[J]. Chinese Journal of Geophysics, 2013, 56( 7): 2218- 2227 (in Chinese). | |
4 | 章迪. GNSS对流层天顶延迟模型及映射函数研究[J]. 测绘学报, 2022, 51( 9): 1984. |
ZHANG D. The study of the GNSS tropospheric zenith delay model and mapping function[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51( 9): 1984 (in Chinese). | |
5 | Konno H. Design of an aircraft landing system using dual-frequency GNSS [D]. Stanford: Stanford University, 2008, 13- 15. |
6 | 喻思琪, 张小红, 郭斐, 等. 卫星导航进近技术进展[J]. 航空学报, 2019, 40( 3): 022200. |
YU S Q, ZHANG X H, GUO F, et al. Recent advances in precision approach based on GNSS[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40( 3): 022200 (in Chinese). | |
7 | CHENG J H, LI J X, LI L, et al. Carrier phase-based ionospheric gradient monitor under the mixed Gaussian distribution[J]. Remote Sensing, 2020, 12( 23): 3915. |
8 | 高利春, 高铭阳, 陈晓芳, 等. 基于SINS/GBAS组合导航的高精度进近着陆导航技术[J]. 系统工程与电子技术, 2023, 45( 1): 210- 220. |
GAO L C, GAO M Y, CHEN X F, et al. High precision approach-and-landing navigation technology based on SINS/GBAS integrated navigation[J]. Systems Engineering and Electronics, 2023, 45( 1): 210- 220 (in Chinese). | |
9 | MCGRAW G A. Tropospheric error modeling for high integrity airborne GNSS navigation[C]∥ Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium. Piscataway: IEEE Press, 2012: 158- 166. |
10 | KHANAFSEH S, VON ENGELN A, PERVAN B, et al. Tropospheric duct anomaly threat model for high integrity and high accuracy navigation[C]∥ Proceedings of the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+2016), ION GNSS+, The International Technical Meeting of the Satellite Division of The Institute of Navigation. Manassas: ION, 2016: 1609- 1616. |
11 | 刘黎军, 夏俊明, 白伟华, 等. 蒸发波导对GNSS海面反射信号有效散射区域的影响[J]. 地球物理学报, 2019, 62( 2): 499- 507. |
LIU L J, XIA J M, BAI W H, et al. Influence of evaporation duct on the effective scattering region of GNSS reflected signals on the sea surface[J]. Chinese Journal of Geophysics, 2019, 62( 2): 499- 507 (in Chinese). | |
12 | CHEN B Y, LIU Z Z, WONG W K, et al. Detecting water vapor variability during heavy precipitation events in Hong Kong using the GPS tomographic technique[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34( 5): 1001- 1019. |
13 | TUNALı E, ÖZLÜDEMIR M T. GNSS PPP with different troposphere models during severe weather conditions[J]. GPS Solutions, 2019, 23( 3): 82. |
14 | 辛蒲敏, 王志鹏. 非标称对流层误差对GBAS完好性的影响[J]. 北京航空航天大学学报, 2017, 43( 9): 1882- 1890. |
XIN P M, WANG Z P. Impact of non-nominal troposphere error on GBAS integrity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43( 9): 1882- 1890 (in Chinese). | |
15 | GUILBERT A, MILNER C, MACABIAU C. Characterization of tropospheric gradients for the ground-based augmentation system through the use of numerical weather models[J]. Navigation, 2017, 64( 4): 475- 493. |
16 | 于耕, 王寒, 赵龙. 非标称对流层误差对地基增强系统完好性的影响[J]. 科学技术与工程, 2018, 18( 31): 235- 240. |
YU G, WANG H, ZHAO L. The impact of non-nominal troposphere error on ground-based augmentation systems integrity[J]. Science Technology and Engineering, 2018, 18( 31): 235- 240 (in Chinese). | |
17 | GUILBERT A, MILNER C, MACABIAU C. Troposphere Reassessment in the scope of MC/MF Ground Based Augmentation System (GBAS) [C]∥ Proceedings of the ION 2015 Pacific PNT Meeting. Manassas: ION, 2015: 763- 772. |
18 | WANG Z P, XIN P M, LI R, et al. A method to reduce non-nominal troposphere error[J]. Sensors, 2017, 17( 8): 1751. |
19 | YEH S J, JAN S S. GBAS airport availability simulation tool[J]. GPS Solutions, 2016, 20( 2): 283- 288. |
20 | LI L, SHI H D, JIA C, et al. Position-domain integrity risk-based ambiguity validation for the integer bootstrap estimator[J]. GPS Solutions, 2018, 22( 2): 39. |
21 | LI L, WANG H, JIA C, et al. Integrity and continuity allocation for the RAIM with multiple constellations[J]. GPS Solutions, 2017, 21( 4): 1503- 1513. |
22 | FELUX M, LEE J Y, HOLZAPFEL F. GBAS ground monitoring requirements from an airworthiness perspective[J]. GPS Solutions, 2015, 19( 3): 393- 401. |
23 | RIFE J H, PULLEN S P. The impact of measurement biases on availability for category Ⅲ LAAS[J]. Navigation, 2005, 52( 4): 215- 228. |
24 | ZHAO Y X, CHENG C, LI L, et al. BDS signal-in-space anomaly probability analysis over the last 6 years[J]. GPS Solutions, 2021, 25( 2): 49. |
25 | 韩清清, 王利, 罗思龙, 等. ARAIM算法的风险概率优化分配[J]. 测绘学报, 2021, 50( 12): 1751- 1761. |
HAN Q Q, WANG L, LUO S L, et al. Optimal allocation of risk probability based on ARAIM algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50( 12): 1751- 1761 (in Chinese). | |
26 | KHANAFSEH S, JOERGER M, PERVAN B, et al. Accounting for tropospheric anomalies in high integrity and high accuracy positioning applications[C]∥ Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2011), Manassas: ION, 2011: 513- 522. |
27 | HUANG J D, VAN GRAAS F. Comparison of tropospheric decorrelation errors in the presence of severe weather conditions in different areas and over different baseline lengths[J]. Navigation, 2007, 54( 3): 207- 226. |
28 | YU S W, LIU Z Z. Tropical cyclone-induced periodical positioning disturbances during the 2017 Hato in the Hong Kong region[J]. GPS Solutions, 2021, 25( 3): 109. |
29 | HUANG J D, VAN GRAAS F, COHENOUR C. Characterization of tropospheric spatial decorrelation errors over a 5-km baseline[J]. Navigation, 2008, 55( 1): 39- 53. |
30 | Lacey L N. Criteria for approval of category III weather minima for take-off, landing, and rollout: AC 120-28D[R]. Washington, D.C.: FAA, 2009. |
31 | European Aviation Safety Agency (EASA). Certification specifications for all weather operations, Subpart 1, automatic landing systems (CS-AWO 131) [S]. Brussels: European Aviation Safety Agency, 2003. |
32 | International Civil Aviation Organization. Ⅱ/Ⅲ development baseline SARPs—draft proposed changes to Annex 10, Volume Ⅰ [S]. Montreal: International Civil Aviation Organization, 2010. |
33 | SCHUSTER W, OCHIENG W. Harmonisation of category-III precision approach navigation system performance requirements[J]. Journal of Navigation, 2010, 63( 4): 569- 589. |
34 | Felux M. Total system performance of GBAS-based automatic landings[D]. München: Technische Universität München, 2018, 37- 40. |
35 | Boeing. Determining the vertical alert limit requirements for a level of GBAS service that is appropriate to support CAT Ⅱ/Ⅲ Operations: D6-83447-4[R]. Chicago: Boeing, 2005. |
36 | Radio Technical Commission for Aeronautics (RTCA). Minimum operational performance standards for GPS local area augmentation system airborne equipment: RTCA DO-253C[R]. Washington, D.C.: RTCA, 2008. |
37 | Clark B, Decleene B. Alert limits: Do we need them for CAT Ⅲ? Deriving GBAS requirements for consistency with CAT III operations[C]∥ Proceedings of ION GNSS 2006. Manassas: ION, 2006: 3070– 3081. |
38 | 陈钦明, 宋淑丽, 朱文耀. 亚洲地区ECMWF/NCEP资料计算ZTD的精度分析[J]. 地球物理学报, 2012, 55( 5): 1541- 1548. |
CHEN Q M, SONG S L, ZHU W Y. An analysis of the accuracy of zenith tropospheric delay calculated from ECMWF/NCEP data over Asian area[J]. Chinese Journal of Geophysics, 2012, 55( 5): 1541- 1548 (in Chinese). | |
39 | 陈权亮, 任景轩, 卞建春, 等. ECMWF和HALOE平流层温度资料对比[J]. 地球物理学报, 2009, 52( 11): 2698- 2703. |
CHEN Q L, REN J X, BIAN J C, et al. Comparison study on ECMWF and HALOE temperature data in the stratosphere[J]. Chinese Journal of Geophysics, 2009, 52( 11): 2698- 2703 (in Chinese). | |
40 | Chen Q M, Song S L, Heise S, et al. Assessment of ZTD derived from ECMWF/NCEP data with GPS ZTD over China[J]. GPS Solut, 15: 415– 425. |
41 | ZHANG Y, WANG Z P. The impact of tropospheric anomalies on sea-based JPALS integrity[J]. Sensors, 2018, 18( 8): 2579. |
42 | GREGORIUS T, BLEWITT G. The effect of weather fronts on GPS measurements[J]. GPS World, 1998, 9: 52- 60. |
[1] | Yanyan LUO, Shuo YANG, Xiaosong PAN, Xuhuai ZHAO, Li ZHANG. Signal reflection suppression and optimized design of high⁃speed connectors for aerospace applications [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 328937-328937. |
[2] | Jing ZHAO, Dan SONG. Integrity monitoring method for GNSS/IMU integrated navigation system of UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 328943-328943. |
[3] | Ruijie LI, Liang LI, Jiachang JIANG, Li CHENG, Liuqi WANG. RAIM integrity risk estimation method based on worst multi⁃satellite faults searching [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 328684-328684. |
[4] | Jie ZHANG, Lin ZHAO, Fuxin YANG, Zhiguo SUN, Liang LI. PPP integrity monitoring algorithm for general-purpose navigation applications [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 327904-327904. |
[5] | YU Dalei, CUI Xining, LI Chengwen, LIU Tingting, ZHOU Yong. Multi-core computing and processing platform based on CPCIe high speed bus in airborne applications [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 325238-325238. |
[6] | PENG Zhenlong, ZHANG Xiangyu, ZHANG Deyuan. High-speed ultrasonic vibration cutting for difficult-to-machine materials in aerospace field [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525587-525587. |
[7] | CUI Degang, BAO Rui, ZHANG Rui, LIU Binchao, OUYANG Tian. Development of aircraft structural fatigue and structural integrity: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(5): 524394-524394. |
[8] | SUN Xiasheng, SU Shaopu, SUN Hanbin, DONG Dengke. Current status and prospect of overseas research on aeronautical fatigue [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(5): 524791-524791. |
[9] | ZHAO Bo, JIANG Yan, BIE Wenbo. Ultrasonic rolling technology in surface strengthening: Progress in research and applications [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(10): 23685-023685. |
[10] | HUANG Yun, XIAO Guijian, ZOU Lai. Current situation and development trend of robot precise belt grinding for aero-engine blade [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(3): 22508-022508. |
[11] | YU Siqi, ZHANG Xiaohong, GUO Fei, LI Xin, PAN Lin, MA Fujian. Recent advances in precision approach based on GNSS [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(3): 22200-022200. |
[12] | SUN Xiasheng, XIAO Yingchun. Opportunities and Challenges of Aircraft Structural Health Monitoring [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(12): 3199-3212. |
[13] | XU Xiaohao, YANG Chuansen, LIU Ruihua. Review and Prospect of GNSS Receiver Autonomous Integrity Monitoring [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(3): 451-463. |
[14] | WU Weijia, WU Dewei, QI Junyi. Research on User Integrity Monitor Mechanism with GNSS Dual-frequency Navigation Signals [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(12): 2246-2252. |
[15] | DU Suigeng, WANG Zhibin, LU Chao, JU Jiangtao, ZHANG Jing. Study on High-speed Milling Surface Microstructure of Superalloy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(6): 1156-1163. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341