[1] 任群. 基于CPCI总线的嵌入式计算机通用接口设计研究[J]. 西安文理学院学报(自然科学版), 2016, 19(1):20-22, 35. REN Q. Research on the design of embedded computer interface based on CPCI bus[J]. Journal of Xi'an University (Natural Science Edition), 2016, 19(1):20-22, 35(in Chinese). [2] MOIR I, SEABRIDGE A G. Military Avionics Systems[M]. Chichester:John Wiley & Sons Ltd., 2006. [3] MOIR I, SEABRIDGE A, JUKES M. Civil Avionics Systems[M]. Chichester:John Wiley & Sons Ltd., 2013. [4] ARINC. Cabin standard enclosures-Modular rack principle (MRP)[S]. Annapolis:Aeronautical Radio, INC., 2012. [5] AGROU H, GATTI M, SAINRAT P, et al. A design approach for predictable and efficient multi-core processor for avionics[C]//2011 IEEE/AIAA 30th Digital Avionics Systems Conference. Piscataway:IEEE Press, 2011:1-32. [6] KIM H, RAJKUMAR R. Real-time cache management for multi-core virtualization[C]//Proceedings of the 13th International Conference on Embedded Software. Pittsburgh:ACM, 2016:15. [7] JEAN X, FAURA D, GATTI M, et al. Ensuring robust partitioning in multicore platforms for IMA systems[C]//2012 IEEE/AIAA 31st Digital Avionics Systems Conference DASC. Piscataway:IEEE Press, 2012:13222073. [8] LIU J, GUO JH. Energy efficient scheduling of real-time tasks on multi-core processors with voltage islands[J]. Future Generation Computer System, 2016, 56:202-210. [9] HAN S, JIN H W. Full virtualization based ARINC 653 partitioning[C]//2011 IEEE/AIAA 30th Digital Avionics Systems Conference. Piscataway:IEEE Press, 2011:1-39. [10] YAO G, PELLIZZONI R, BAK S, et al. Memory-centric scheduling for multicore hard real-time systems[J]. Real-Time Systems, 2012, 48(6):681-715. [11] FUCHSEN R. How to address certification for multi-core based IMA platforms:current status and potential solutions[C]//29th Digital Avionics Systems Conference. Piscataway:IEEE Press, 2010:5.E.3-1. [12] AEEC. ARINC specification 653P1-4 avionics application software standard interface set[S]. Bowie:SAE-ITC, 2015. [13] VxWorks 6533.0 multi-core edition[EB/OL].(2015-05-15)[2021-01-11]. http://www.windriver.com. [14] 秦涛, 周强, 刘亚斌. CPCIe X1适配卡的关键技术[J]. 计算机工程与设计, 2015, 36(1):263-267. QIN T, ZHOU Q, LIU Y B. Key technique of CPCIe X1 adapter[J]. Computer Engineering and Design, 2015, 36(1):263-267(in Chinese). [15] 徐健, 张建泉, 张健. 基于PCIE非透明桥的嵌入式异构平台设计[J]. 微电子学与计算机, 2018, 35(1):26-30. XU J, ZHANG J Q, ZHANG J. An application of PCIE non-transparent bridge on A heterogeneous platform[J]. Microelectronics & Computer, 2018, 35(1):26-30(in Chinese). [16] PCI Special Interest Group.PCI express base specification revision 1.0a[EB/OL].(2014-07-21)[2021-01-11].http://netyi.net/Book. [17] 周奇, 宣学雷, 贺光辉. 应用于FPGA的PCIe接口设计与验证[J]. 微电子学与计算机, 2019, 36(7):17-21. ZHOU Q, XUAN X L, HE G H. Design and verification of PCIE interface for FPGA[J]. Microelectronics & Computer, 2019, 36(7):17-21(in Chinese). [18] ROTA L, CASELLE M, CHILINGARYAN S, et al. A PCIe DMA architecture for multi-gigabyte per second data transmission[J]. IEEE Transactions on Nuclear Science, 2015, 62(3):972-976. [19] 许川佩, 李春丰, 张培源. PCI Express协议事务层设计与仿真[J]. 微电子学与计算机, 2018, 35(9):64-69. XU C P, LI C F, ZHANG P Y. The design and simulation of transaction layer of PCI express protocol[J]. Microelectronics & Computer, 2018, 35(9):64-69(in Chinese). [20] NACUL A C, REGAZZONI F, LAJOLO M. Hardware scheduling support in SMP architectures[C]//2007 Design, Automation & Test in Europe Conference & Exhibition. Piscataway:IEEE Press, 2007:1-6. [21] YUAN Q B, BAO Y G, CHEN M Y, et al. A scalability analysis of the symmetric multiprocessing architecture in multi-core system[C]//2009 IEEE International Conference on Networking, Architecture, and Storage. Piscataway:IEEE Press, 2009:231-234. [22] SAIFULLAH A, AGRAWAL K, LU C Y, et all. Multi-core real-time scheduling for generalized parallel task models[C]//31st IEEE Real-Time Systems Symp. (RTSS). Piscataway:IEEE Press, 2010:217-226. [23] 耶菲. 过孔桩线对信号完整性的影响以及解决[J]. 航空计算技术, 2018, 48(5):257-260. YE F. Inflence and solution of VIA stub to signal integrity[J]. Aeronautical Computing Technique, 2018, 48(5):257-260(in Chinese). |