ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2019, Vol. 40 ›› Issue (3): 22508-022508.doi: 10.7527/S1000-6893.2018.22508
• Review • Previous Articles Next Articles
HUANG Yun, XIAO Guijian, ZOU Lai
Received:
2018-07-02
Revised:
2018-07-23
Online:
2019-03-15
Published:
2018-08-16
Supported by:
CLC Number:
HUANG Yun, XIAO Guijian, ZOU Lai. Current situation and development trend of robot precise belt grinding for aero-engine blade[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(3): 22508-022508.
[1] 黄云, 肖贵坚, 邹莱. 整体叶盘抛光技术的研究现状及发展趋势[J]. 航空学报, 2016, 37(7):2045-2064. HUANG Y, XIAO G J, ZOU L. Current situation and development trend of polishing technology for blisk[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2045-2064(in Chinese). [2] 郭东明, 孙玉文, 贾振元. 高性能精密制造方法及其研究进展[J]. 机械工程学报, 2014, 50(11):119-134. GUO D M, SUN Y W, JIA Z Y. Methods and research progress of high performance manufacturing[J]. Journal of Mechanical Engineering, 2014, 50(11):119-134(in Chinese). [3] 王增强. 先进航空发动机关键制造技术[J]. 航空制造技术, 2015, 492(22):34-38. WANG Z Q. Key manufacturing technology of advanced aero-engine[J]. Aeronautical Manufacturing Technology, 2015, 492(22):34-38(in Chinese). [4] 史耀耀, 段继豪, 张军峰, 等. 整体叶盘制造工艺技术综述[J]. 航空制造技术, 2012, 399(3):26-31. SHI Y Y, DUAN J H, ZHANG J F, et al. Blisk disc manufacturing process technology[J]. Aeronautical Manufacturing Technology, 2012, 399(3):26-31(in Chinese). [5] 陈贵林, 赵春蓉. 航空发动机精锻叶片数字化生产线[J]. 航空制造技术, 2015(22):78-83. CHEN G L, ZHAO C R. Digital production line of precision forging aero-engine blade[J]. Aeronautical Manufacturing Technology, 2015(22):78-83(in Chinese). [6] WILLIAMS R E, MELTON V L. Abrasive flow finishing of stereo lithography prototypes[J]. Rapid Prototyping Journal, 1998, 4(2):56-67. [7] 高航, 吴鸣宇, 付有志, 等. 流体磨料光整加工理论与技术的发展[J]. 机械工程学报, 2015, 51(7):174-187. GAO H, WU M Y, FU Y Z, et al. Development of theory and technology in fluid abrasive finishing technology[J]. Journal of Mechanical Engineering, 2015, 51(7):174-187(in Chinese). [8] TAHVILIAN A M, LIU Z H, CHAMPLIAUD H, et al. Characterization of grinding wheel grain topography under different robotic grinding conditions using confocal microscope[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5-8):1159-1171. [9] SRIVASTAVA A K, ULRICH B J, ELBESTAWI M A. Analysis of rigid-disk wear during robotic grinding[J]. International Journal of Machine Tools and Manufacture, 1990, 30(4):521-534. [10] 段继豪, 史耀耀, 张军锋, 等. 航空发动机叶片柔性抛光技术[J]. 航空学报, 2012, 33(3):573-578. DUAN J H, SHI Y Y, ZHANG J F, et al. Flexible polishing technology for blade of aviation engine[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):573-578(in Chinese). [11] XIAO G J, HUANG Y. Equivalent self-adaptive belt grinding for the real-R edge of an aero-engine precision-forged blade[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9-12):1697-1706. [12] 蔺小军, 杨艳, 吴广, 等. 面向叶片型面的五轴联动柔性数控砂带抛光技术[J]. 航空学报, 2015, 36(6):2074-2082. LIN X J, YANG Y, WU G, et al. Flexible polishing technology of five-axis NC abrasive belt for blade surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):2074-2082(in Chinese). [13] WANG W, YUN C. A path planning method for robotic belt surface grinding[J]. Chinese Journal of Aeronautics, 2011, 24(4):520-526. [14] XIAO G J, HUANG Y. Experimental research and modelling of life-cycle material removal in belt finishing for titanium alloy[J]. Journal of Manufacturing Processes, 2017, 30:255-267. [15] XIAO G J, HUANG Y, WANG J. Path planning method for longitudinal micro-marks on blisk root-fillet with belt grinding[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(1-4):797-810. [16] WANG L, WU J, LI T, et al. A study on the dynamic characteristics of the 2-DOF redundant parallel manipulator of a hybrid machine tool[J]. International Journal of Robotics and Automation, 2015, 30(2):344-350. [17] WANG L, WU J, WANG J, et al. An experimental study of a redundantly actuated parallel manipulator for a 5-DOF hybrid machine tool[J]. IEEE/ASME Transactions on Mechatronics, 2009, 14(1):72-81. [18] XU B S, DONG S Y, ZHU S, et al. Prospects and developing of remanufacture forming technology[J]. Journal of Mechanical Engineering, 2012, 48(15):96-105. [19] ECKART U, FLORIAN H. Improving efficiency in robot assisted belt grinding of high performance materials[J]. Advanced Materials Research, 2014, 907:139-149. [20] ECKART U, FLORIAN H, MARCEL M, et al. Applicability of industrial robots for machining and repair processes[J]. Procedia CIRP, 2013, 11:234-238. [21] WHITTON S. Adaptive robot grinding improves turbine blade repair[J]. Industrial Robot:An International Journal, 2003, 30(4):https://doi.org/10.1108/ir.2003.04930daf.002. [22] WU J, WANG J, WANG L, et al. Study on the stiffness of a 5-DOF hybrid machine tool with actuation redundancy[J]. Mechanism and Machine Theory, 2009, 44(2):289-305. [23] WU J, WANG J, WANG L, et al. Dynamic model and force control of the redundantly actuated parallel manipulator of a 5-DOF hybrid machine tool[J]. Robotica, 2008, 27(1):59-65. [24] 杨旭. 新型叶片混联抛磨机床及其关键技术研究[D]. 长春:吉林大学, 2010:16-18. YANG X. Research on the key technology of a novel hybrid grinding and polishing machine tool for blade finishing[D]. Changchun:Jilin University, 2010:16-18(in Chinese). [25] XU L L, TIAN W Y, MAO E. Impedance control of wind turbine blade grinding robot[J]. Applied Mechanics and Materials, 2011:1203-1207. [26] XIE S B, LI S, CHEN B, et al. Research on robot grinding technology considering removal rate and roughness[J]. Intelligent Robotics and Applications, 2017:79-90. [27] 任旭. 机器人砂带磨削航发叶片关键技术研究[D]. 重庆:重庆大学, 2017:6-7. REN X. Research on the key technology in robot belt grinding of aero-engine blade[D]. Chongqing:Chongqing University, 2017:6-7(in Chinese). [28] BLUM H, SUTTMEIER F T. An adaptive finite element discretisation for a simplified Signorini problem[J]. Calcolo, 2000, 37(2):65-77. [29] REN X, KUHLENKÖTTER B. Real-time simulation and visualization of robotic belt grinding processes[J]. International Journal of Advanced Manufacturing Technology, 2008, 35(11-12):1090-1099. [30] ZHANG X, KUHLENKÖTTER B, KNEUPNER K. An efficient method for solving the Signorini problem in the simulation of free-form surfaces produced by belt grinding[J]. International Journal of Machine Tools & Manufacture, 2005, 45(6):641-648. [31] WANG W, LIU F, LIU Z H, et al. Prediction of depth of cut for robotic belt grinding[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(1-4):699-708. [32] REN X Y, MUELLER H, KUHLENKOETTER B. Surfel-based surface modeling for robotic belt grinding simulation[J]. Journal of Zhejiang University Science A, 2017, 7(7):1215-1224. [33] REN X, KUHLENKÖTTER B, MÜLLER H. Simulation and verification of belt grinding with industrial robots[J]. International Journal of Machine Tools & Manufacture, 2006, 46(7):708-716. [34] REN X, CABARAVDIC M, ZHANG X, et al. A local process model for simulation of robotic belt grinding[J]. International Journal of Machine Tools & Manufacture, 2007, 47(6):962-970. [35] 张雷, 袁楚明, 陈幼平, 等. 模具曲面抛光时表面去除的建模与试验研究[J]. 机械工程学报, 2002, 38(12):98-102. ZHANG L, YUAN C M, CHEN Y P, et al. Modeling and experiment of material removal in polishing on mold curved surfaces[J]. Journal of Mechanical Engineering, 2002, 38(12):98-102(in Chinese). [36] WANG Y J, HUANG Y, CHEN Y X, et al. Model of an abrasive belt grinding surface removal contour and its application[J]. International Journal of Advanced Manufacturing Technology, 2015, 82(9-12):2113-2122. [37] SUN Y, VU T T, HALIL Z, et al. Material removal prediction for contact wheels based on a dynamic pressure sensor[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(1-4):945-951. [38] AGUSTINA B, MARIN M M, TETI R, et al. Surface roughness evaluation based on acoustic emission signals in robot assisted polishing[J]. Sensors, 2014,14(11):21514-21522. [39] WU S H, KAZEROUNIAN K, GAN Z X, et al. A simulation platform for optimal selection of robotic belt grinding system parameters[J]. International Journal of Advanced Manufacturing Technology, 2013, 64(1-4):447-458. [40] RAFIEIAN F, HAZEL B, LIU Z H. Vibro-impact dynamics of material removal in a robotic grinding process[J]. International Journal of Advanced Manufacturing Technology, 2014, 73(1-4):949-972. [41] CHEN J Q, CHEN H B, XU J J, et al. Acoustic signal-based tool condition monitoring in belt grinding of nickel-based superalloys using RF classifier and MLR algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2018:https://doi.org/10.1007/s00170-018-2270-9. [42] ZHANG X Q, CHEN H B, XU J J, et al. A novel sound-based belt condition monitoring method for robotic grinding using optimally pruned extreme learning machine[J]. Journal of Materials Processing Technology, 2018, 260:9-19. [43] ZHU D H, LUO S Y, YANG L, et al. On energetic assessment of cutting mechanisms in robot-assisted belt grinding of titanium alloys[J]. Tribology International, 2015, 90:55-59. [44] SONG Y X, LIANG W, YANG Y. A method for grinding removal control of a robot belt grinding system[J]. Journal of Intelligent Manufacturing, 2012, 23(5):1903-1913. [45] 刘斐, 王伟, 王雷, 等. 接触轮变形对机器人砂带磨削深度的影响[J]. 机械工程学报, 2017, 53(5):86-92. LIU W, WANG W, WANG L, et al. Effect of contact wheel's deformation on cutting depth for robotic belt grinding[J]. Journal of Mechanical Engineering, 2017, 53(5):86-92(in Chinese). [46] 吕洪波, 宋亦旭, 贾培发. 机器人修磨中融合先验知识的适应学习建模方法[J]. 机器人, 2011, 33(6):641-648. LV H B, SONG Y X, JIA P F. Incorporation of prior knowledge in adaptive learning for modeling the robotic profile grinding[J]. Robot, 2011, 33(6):641-648(in Chinese). [47] 杨扬, 宋亦旭, 梁伟, 等. 基于SVM的机器人高精度磨削建模[J]. 机器人, 2010, 32(2):278-282. YANG Y, SONG Y X, LIANG W, et al. Modeling for robot high precision grinding based on SVM[J]. Robot, 2010, 32(2):278-282(in Chinese). [48] SONG Y X, YANG H J, LV H B. Intelligent control for a robot belt grinding system[J]. IEEE Transactions on Control Systems Technology, 2013, 21(3):716-724. [49] 吕洪波. 机器人智能修磨方法研究[D]. 北京:清华大学, 2011:9-10. LV H B. Research on intelligent method for robotic profile belt grinding[D]. Beijing:Tsinghua University, 2011:9-10(in Chinese). [50] FERNANDEZ A, JOSE A D, JAVIERRE C, et al. Surface roughness evolution model for finishing using an abrasive tool on a robot[J]. International Journal of Advanced Robotic Systems, 2015, 12(9):119-122. [51] ERIKSEN R S, ARENTOFT M, GRONBAK J, et al. Manufacture of functional surfaces through combined application of tool manufacturing processes and robot assisted polishing[J]. CIRP Annals-Manufacturing Technology, 2012, 61(1):563-566. [52] SEGRETO T, KARAM S, TETI R. Signal processing and pattern recognition for surface roughness assessment in multiple sensor monitoring of robot-assisted polishing[J]. International Journal of Advanced Manufacturing Technology, 2017, 90(1-4):1023-1033. [53] JOURANI A, DURSAPT M, HAMDI H, et al. Effect of the belt grinding on the surface texture:Modeling of the contact and abrasive wear[J]. Wear, 2005, 259(7):1137-1143. [54] BIGERELLE M, GAUTIER A, HAGEGE B, et al. Roughness characteristic length scales of belt finished surface[J]. Journal of Materials Processing Technology, 2009, 209(20):6103-6116. [55] BIGERELLE M, GAUTIER A, HAGEGE B. Mechanical modelling of micro-scale abrasion in superfinish belt grinding[J]. Tribology International, 2008, 41(11):992-1001. [56] PANDIYAN V, TJAHJOWIDODO T, SAMY M P. In-process surface roughness estimation model for compliant abrasive belt machining process[J]. Procedia CIRP, 2016, 46:254-257. [57] 叶潇潇. 航发钛合金叶片数控砂带磨削表面完整性研究[D]. 重庆:重庆大学, 2013:7-8. YE X X. Study on the surface integrity of titanium blade processed by CNC abrasive belt grinding[D]. Chongqing:Chongqing University, 2013:7-8(in Chinese). [58] XIAO G J, HUANG Y. Adaptive belt precision grinding for the weak rigidity deformation of blisk leading and trailing edge[J]. Advances in Mechanical Engineering, 2017, 9(10):1-12. [59] HUANG Y, XIAO G J, ZHAO H Q, et al. Residual stress of belt polishing for the micro-stiffener surface on the titanium alloys[J]. Procedia CIRP, 2018, 71:11-15. [60] ZHAO T, SHI Y Y, LIN X J, et al. Surface roughness prediction and parameters optimization in grinding and polishing process for IBR of aero-engine[J]. The International Journal of Advanced Manufacturing Technology, 2014, 74(5):653-663. [61] LI W L, XIE H, ZHANG G, et al. 3-D shape matching of a blade surface in robotic grinding applications[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5):2294-2306. [62] LI S Q, XIE X P, YIN L T. Research on robotic trajectory automatic generation method for complex surface grinding and polishing[J]. Lecture Notes in Computer Science, 2014, 8918:124-135. [63] HUANG H, GONG Z, CHEN X, et al. Robotic grinding and polishing for turbine-vane overhaul[J]. Journal of Material Process Technology, 2002, 127(2):140-145. [64] HUANG H, GONG Z, CHEN X, et al. Smart robotic system for profile turbine vane airfoil repair[J]. Journal of Advanced Manufacturing Technology, 2003, 21(4):275-283. [65] 韩光超, 孙明, 张海鸥, 等. 基于CAM的机器人抛光轨迹规划[J]. 华中科技大学学报(自然科学版), 2008, 36(5):60-62. HAN G C, SUN M, ZHANG H O, et al. Polishing path planning for industrial robots using CAM software[J]. Journal Huazhong University of Science and Technology (Natural Science Edition), 2008, 36(5):60-62(in Chinese). [66] 赵扬, 赵继, 张雷, 等. 基于逆向工程的机器人磨削叶片[J]. 吉林大学学报(工学版), 2009, 39(5):1176-1180. ZHAO Y, ZHAO J, ZHANG L, et al. Robotic blade grinding based on reverse engineering[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(5):1176-1180(in Chinese). [67] 宋江波. 航发精锻冷辊轧叶片进排气边缘磨削加工技术研究[D]. 沈阳:沈阳工业大学, 2017:8-9. SONG J B. Research on grinding process of leading and trailing edges of aero engine precision forged cold rolled blade[D]. Shenyang:Shenyang University of Technology, 2017:8-9(in Chinese). [68] MAO Y Y, ZHAO H, ZHAO X, et al. Trajectory and force generation with multi-constraints for robotic belt grinding[J]. Intelligent Robotics and Applications, 2017:14-23. [69] ZHANG X, CABARAVDIC M, KNEUPNER K, et al. Real-time simulation of robot controlled belt grinding processes of sculptured surfaces[J]. International Journal of Advanced Robotic Systems, 2004, 1(1):109-114. [70] KHARIDEGE A, TING D T, ZHANG Y J.A practical approach for automated polishing system of free-form surface path generation based on industrial arm robot[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(9-12):3921-3934. [71] 王伟, 贠超, 张令. 机器人砂带磨削的曲面路径优化算法[J]. 机械工程学报, 2011, 47(7):8-15. WANG W, YUN C, ZHANG L. Optimization algorithm for robotic belt surface grinding process[J]. Journal of Mechanical Engineering, 2011, 47(7):8-15(in Chinese). [72] 郭彤颖, 曲道奎. 一种基于遗传算法的机器人加工路径规划方法[J]. 华中科技大学学报(自然科学版), 2004, 32(S1):123-125. GUO T Y, QU D K. A method of machining path planning for robot based on genetic algorithm[J]. Journal Huazhong University of Science and Technology (Natural Science Edition), 2004, 32(S1):123-125(in Chinese). [73] 万从保. 航空发动机整体叶盘机器人磨抛加工关键技术研究[D]. 成都:电子科技大学, 2017:7-8. WAN C B. Research on the key technology of robot polishing for aero engine blisk[D]. Chengdu:University of Electronic Science and Technology, 2017:7-8(in Chinese). [74] 张海洋. 叶片砂带磨削机器人轨迹规划与离线编程[D]. 武汉:华中科技大学, 2014:7-8. ZHANG H Y. Robotic trajectory planning and off-line programming for belt grinding of turbine blade[D]. Wuhan:Huazhong University of Science and Technology, 2014:7-8(in Chinese). [75] 陈巍. 点云匹配技术在机器人砂带磨削系统中的应用研究[D]. 武汉:华中科技大学, 2014:10-11. CHEN W. The application research of point registration in the robotic belt grinding system[D]. Wuhan:Huazhong University of Science and Technology, 2014:10-11(in Chinese). [76] 徐文秀, 史耀耀. 整体叶盘机器人自动化抛光技术[J]. 机械设计, 2010, 27(7):47-50. XU W X, SHI Y Y. Automatic polishing technology of blisk robot[J]. Journal of Machine Design, 2010, 27(7):47-50(in Chinese). [77] NG W X, CHAN H K, TEO W K, et al. Capturing the tacit knowledge of the skilled operator to program tool paths and tool orientations for robot belt grinding[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(5-8):1599-1618. [78] NG W X, CHAN H K, TEO W K, et al. Programming a robot for conformance grinding of complex shapes by capturing the tacit knowledge of a skilled operator[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(2):1020-1030. [79] LV H, SONG Y, JIA P, et al. An adaptive modeling approach based on ESN for robotic belt grinding[C]//IEEE International Conference on Information & Automation, 2010:787-792. [80] LV H, SONG Y, JIA P. Parameter optimization using PSO for ESN-based robotic belt grinding modeling[C]//International Workshop on Intelligent Systems & Applications, 2011:1-4. [81] ZHU D H, XU X H, YANG Z Y, et al. Analysis and assessment of robotic belt grinding mechanisms by force modeling and force control experiments[J]. Tribology International, 2018, 120:93-98. [82] TIAN F J, LI Z G, LV C, et al. Polishing pressure investigations of robot automatic polishing on curved surfaces[J]. International Journal of Advanced Manufacturing Technology, 2016, 87(1-4):639-646. [83] TIAN F J, LV C, LI Z G, et al. Modeling and control of robotic automatic polishing for curved surfaces[J]. CIRP Journal of Manufacturing Science and Technology, 2016, 14:55-64. [84] RAFIEIAN F, GIRARDIN F, LIU Z H, et al. Angular analysis of the cyclic impacting oscillations in a robotic grinding process[J]. Mechanical Systems and Signal Processing, 2014, 44(1-2):160-176. [85] SUN Y Q, GIBLIN D J, KAZEROUNIAN K. Accurate robotic belt grinding of workpieces with complex geometries using relative calibration techniques[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25:204-210. [86] MOHAMMAD A EI K, HONG J, WANG D W. Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49:54-65. [87] ZHAO P, SHI Y. Composite adaptive control of belt polishing force for aero-engine blade[J]. Chinese Journal of Mechanical Engineering, 2013, 26(5):988-996. [88] 倪小波, 金德闻, 张济川. 粗糙表面的机器人磨削实验与分析[J]. 中国机械工程, 2004, 15(22):12-15. NI X B, JIN D W, ZHANG J C. Experimental investigation on rough surfaces grinded by a robotic arm[J]. China Mechanical Engineering, 2004, 15(22):12-15(in Chinese). [89] 韩光超, 孙明. 基于轨迹控制的机器人抛光工艺[J]. 华中科技大学学报(自然科学版), 2009, 37(2):75-77, 84. HAN G C, SUN M. Path control-based robotic polishing technology[J]. Journal Huazhong University of Science and Technology (Natural Science Edition), 2009, 37(2):75-77, 84(in Chinese). [90] 刘志恒. 基于力反馈的打磨机器人控制系统研究[D]. 哈尔滨:哈尔滨工业大学, 2017:9-10. LIU Z H. Research on grinding robot control system based on force feedback[D]. Harbin:Harbin Institute of Technology, 2017:9-10(in Chinese). [91] 李振国. 基于柔顺控制的复杂曲面机器人自动抛磨技术研究[D]. 沈阳:沈阳理工大学, 2017:9-10. LI Z G. Study on robotic automatic grinding for freeform surfaces based on compliance control[D]. Shenyang:Shenyang Ligong University, 2017:9-10(in Chinese). [92] 李闯. 抛磨机器人力反馈装置设计与实验研究[D]. 苏州:苏州大学, 2016:11-13. LI C. The design and experimental research of force feedback device in a grinding and polishing robot[D]. Suzhou:Suzhou University, 2016:11-13(in Chinese). [93] 杨龙. 机器人砂带磨抛力建模及其在钛合金叶片加工中的应用[D]. 武汉:华中科技大学, 2015:10-11. YANG L. Grinding force modeling and experimental research in robot-assisted belt grinding titanium alloy blade[D]. Wuhan:Huazhong University of Science and Technology, 2015:10-11(in Chinese). [94] 刘文波. 基于力控制方法的工业机器人磨削研究[D]. 广州:华南理工大学, 2014:8-9. LIU W B. Research on industrial robot grinding based on force control[D]. Guangzhou:South China University of Technology, 2014:8-9(in Chinese). [95] 邓暘. 抛光机器人末端气动执行机构的接触力控制[D]. 哈尔滨:哈尔滨工业大学, 2016:7-8. DENG Y. Force control of polishing robot end pneumatic actuator[D]. Harbin:Harbin Institute of Technology, 2016:7-8(in Chinese). [96] 蔡得领. 机器人砂带磨抛控制系统设计[D]. 武汉:华中科技大学, 2014:6-7. CAI D L. Control system design of robotic belt-polishing[D]. Wuhan:Huazhong University of Science and Technology, 2014:6-7(in Chinese). [97] 王淼. 抛光打磨机器人控制系统的设计与实现[D]. 广州:广东工业大学, 2016:5-6. WANG M. Design and implementation of control system for polishing robot[D]. Guangzhou:Guangdong University of Technology, 2016:5-6(in Chinese). [98] XU X H, ZHU D H, ZHANG H Y, et al. TCP-based calibration in robot-assisted belt grinding of aero-engine blades using scanner measurements[J]. International Journal of Advanced Manufacturing Technology, 2017, 90(1-4):635-647. [99] LI W L, XIE H, ZHANG G, et al. Hand-eye calibration in visually-guided robot grinding[J]. IEEE Transactions on Cybernetics, 2016, 46(11):2634-2642. [100] XIAO G J, HUANG Y, YIN J C. An integrated polishing method for compressor blade surfaces[J]. International Journal of Advanced Manufacturing Technology, 2017, 88(5-8):1723-1733. [101] XIAO G J, HUANG Y. Constant-load adaptive belt polishing of the weak-rigidity blisk blade[J]. International Journal of Advanced Manufacturing Technology, 2015, 78(9-12):1473-1484. [102] WANG W, YUN C, ZHANG L, et al. Designing and optimization of an off-line programming system for robot belt grinding process[J]. Chinese Journal of Mechanical Engineering, 2011, 24(4):647-655. [103] ZHANG D, YUN C, ZHANG L. Fixture optimization for robotic belt grinding system[J]. Applied Mechanics and Materials, 2011, 121-126:2030-2034. [104] LIANG W, SONG Y X, LV H B, et al. An effective trajectory optimization method for robotic belt grinding based on intelligent algorithm[C]//2010 IEEE International Conference on Robotics and Biomimetics (ROBIO 2010), 2010:1142-1147. [105] SONG Y X, LV H B, YANG Z H. An adaptive modeling method for a robot belt grinding process[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(2):309-317. [106] 赵庆江. 面向磨削的机器人参数标定与离线编程研究[D]. 哈尔滨:哈尔滨工业大学, 2015:7-8. ZHAO Q J. Research on robot parameter calibration and offline programming for grinding[D]. Harbin:Harbin Institute of Technology, 2015:7-8(in Chinese). [107] 齐立哲, 甘中学, 贠超, 等. 机器人砂带磨削系统作业精度分析与误差补偿[J]. 机器人, 2010, 32(6):787-791, 798. QI L Z, GAN Z X, YUN C, et al. Working accuracy analysis and error compensation for robotic belt grinding system[J]. Robot, 2010, 32(6):787-791, 798(in Chinese). [108] 王伟, 贠超, 孙坤, 等. 机器人修形磨削工具坐标系的精确标定方法[J]. 北京航空航天大学学报, 2009, 35(6):741-746. WANG W, YUN C, SUN K, et al. Accurate tool calibration for robotic conformance grinding system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(6):741-746(in Chinese). [109] 赵扬. 机器人磨削叶片关键技术研究[D]. 长春:吉林大学, 2009:15-16. ZHAO Y. Research on key technology of robotic blade grinding[D]. Changchun:Jilin University, 2009:15-16(in Chinese). [110] 李勇华. 叶片机器人磨抛软件系统关键技术开发与集成[D]. 武汉:华中科技大学, 2015:8-9. LI Y H. Development and integration of key technologies of the blade robotic belt-grinding software[D]. Wuhan:Huazhong University of Science and Technology, 2015:8-9(in Chinese). [111] 吴青海. 叶片砂带磨削系统的建立及叶片磨削研究[D]. 沈阳:东北大学, 2013:11-12. WU Q H. The system creation of belt grinding for blade and research of belt grinding[D]. Shenyang:Northeastern University, 2013:11-12(in Chinese). [112] VAHRENKAMP N, ASFOUR T. Representing the robot's workspace through constrained manipulability analysis[J]. Autonomous Robots, 2015, 38(1):17-30. [113] ROBERTS R G. The dexterity and singularities of an underactuated robot[J]. Journal of Robotic Systems, 2001,18(4):159-169. [114] GOSSELIN C M. Dexterity indices for planar and spatial robotic manipulators[C]//1990 IEEE International Conference on Robotics and Automation (ICRA), 1990:650-665. [115] GOSSELIN C, ANGELES J. A global performance index for the kinematic optimization of robotic manipulators[J]. Journal of Mechanical Design, 1991, 113(3):220-226. [116] PARK F C, BROCKEET R W. Kinematic dexterity of robotic mechanisms[J]. The International Journal of Robotics Research, 1994, 13(1):1-15. [117] TCHON K, ZADAMOWSKA K. Kinematic dexterity of mobile manipulators:An endogenous configuration space approach[J]. Robotica, 2003, 21(5):521-530. [118] GAO Z H, LAN X D, BIAN Y S. Structural dimension optimization of robotic belt grinding system for grinding workpieces with complex shaped surfaces based on dexterity grinding space[J]. Chinese Journal of Aeronautics, 2011, 24(3):346-354. [119] ZHANG D, YUN C, SONG D Z. Dexterous space optimization for robotic belt grinding[J]. Procedia Engineering, 2011, 15:2762-2766. [120] 张栋, 贠超, 宋德政, 等. 基于正交试验法的3P3R磨削机器人灵活性优化[J]. 北京航空航天大学学报, 2010, 36(9):1075-1079. ZHANG D, YUN C, SONG D Z, et al. Dexterity optimization based on orthogonal test of 3P3R grinding robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(9):1075-1079(in Chinese). [121] 王伟, 贠超. 砂带磨削机器人的灵活性分析与优化[J]. 机器人, 2010, 32(1):48-54. WANG W, YUN C. Dexterity analysis and optimization of belt grinding robot[J]. Robot, 2010, 32(1):48-54(in Chinese). [122] 马良. 叶片机器人砂带磨削系统数字样机建立与分析[D]. 沈阳:东北大学, 2014:5-6. MA L. Research on the digital prototype modeling and analysis of robotic belt grinding system for blades[D]. Shenyang:Northeastern University, 2014:5-6(in Chinese). |
[1] | Zhe LIU, Xige ZHANG, Changzhu WEI, Naigang CUI. High-precision adaptive convex programming for reentry trajectories of suborbital vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729430-729430. |
[2] | Zhenwei WANG, Kai LIU, Jian GUO, Xiaopeng LIU. A multi⁃UAVs and multi⁃USVs formation cooperative mechanism based on leader⁃follower strategy [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729791-729791. |
[3] | Yongzhi SHENG, Jiahao GAN, Chengxin ZHANG. Fractional order sliding mode guidance law design with trajectory adjustable and terminal angular constraint [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 327073-327073. |
[4] | Neng WAN, Qixin ZHUANG, Yanheng GUO, Zhiyong CHANG, Dao WANG. Sampling strategy for on-machine measurement of aero-engine blade under constraint of fitting accuracy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(7): 427151-427151. |
[5] | Gang LEI, Wei LUO, Yunshu LI, Canhui LAI. Optimization of reentry maneuver trajectory for hypersonic glide vehicles in multiple no-fly zones [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528769-528769. |
[6] | Qilei GUO, Weimin SANG, Junjie NIU, Ye YUAN. UAV flight strategy considering icing risk under complex meteorological conditions [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(1): 627518-627518. |
[7] | RAN Qingbo, XIAO Hong, YANG Fuhong, DUAN Yugang. Trajectory planning algorithm for automatic wire laying on perforated surface [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 425602-425602. |
[8] | SUN Yang, CHANG Min, BAI Junqiang. Trajectory planning and control for micro-quadrotor perching on vertical surface [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 325756-325756. |
[9] | XIE Hua, LI Zihong, YANG Lei, ZHU Yongwen, LIU Fangzi. Optimization of four-dimensional trajectory of city pair with limited capacity [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 325581-325581. |
[10] | PENG Zhenlong, ZHANG Xiangyu, ZHANG Deyuan. High-speed ultrasonic vibration cutting for difficult-to-machine materials in aerospace field [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525587-525587. |
[11] | XU Guangtong, WANG Zhu, CAO Yan, SUN Jingliang, LONG Teng. Dynamic-priority-decoupled UAV swarm trajectory planning using distributed sequential convex programming [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 325059-325059. |
[12] | LI Yuhui, ZHAO Min, CHEN Qi, YAO Min, HE Ziyang. Combined trajectory planning of parafoil systems in complex environments [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 324566-324566. |
[13] | SUN Hao, SUN Qinglin, TENG Haishan, ZHOU Peng, CHEN Zengqiang. Trajectory planning for parafoil system considering dynamic constraints in complicated environment [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 324301-324301. |
[14] | YANG Lei, LI Wenbo, LIU Fangzi, CHEN Yutong, ZHAO Zheng. Multi-objective optimization of continuous descending trajectories in flexible airspace [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 324157-324157. |
[15] | DENG Yunshan, XIA Yuanqing, SUN Zhongqi, SHEN Ganghui. Autonomous trajectory planning method for Mars precise landing in disturbed environment [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(11): 524834-524834. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341