Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (3): 28719-028719.doi: 10.7527/S1000-6893.2023.28719
• Reviews • Previous Articles Next Articles
Yupeng WEI1,2,3, Shan CHEN1,2, Yating WANG1,2, Dongxin WANG3, Yanhong YU1,2, Meng ZHANG1,2, Rongzhen XIAO1,2(), Liang ZHU1,2, Yuewei CHENG3
Received:
2023-03-20
Revised:
2023-05-16
Accepted:
2023-06-05
Online:
2024-02-15
Published:
2023-06-16
Contact:
Rongzhen XIAO
E-mail:119235627@qq.com
Supported by:
CLC Number:
Yupeng WEI, Shan CHEN, Yating WANG, Dongxin WANG, Yanhong YU, Meng ZHANG, Rongzhen XIAO, Liang ZHU, Yuewei CHENG. Research progress on refractory metal and metallic carbide/oxide powder preparation techniques[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 28719-028719.
Table 2
Powder raw materials, preparation methods and its morphology
原料 | 制备方法 | 粉体粒径 | 制备的粉体及形貌 | 参考文献 |
---|---|---|---|---|
MoO2 | 氢还原 | 2.11~3.25 μm,0.28~0.88 μm | 不规则颗粒状Mo粉 | [ |
MoS2 | 碳热还原 | 0.5~2.0 μm | 椭球状Mo粉 | [ |
球形MoO3 | NH3还原 | 球状Mo粉 | [ | |
纤维状MoO3 | NH3还原 | 纤维状Mo粉 | [ | |
MoO3 | 碳热还原+氢还原 | 400 nm | 不规则颗粒状Mo粉 | [ |
不规则粒状Mo粉 | 射频等离子体法 | 30 nm | 球状Mo粉 | [ |
不规则粒状Ta粉 | 射频等离子体法 | 17~43 μm | 球状Ta粉 | [ |
Ta金属丝 | 电爆法 | 15 μm | 球状Ta粉 | [ |
(NH4)6H2W12O40·nH2O | 燃烧法 | ~100 nm | 不规则颗粒状W粉 | [ |
W金属丝 | 电爆法 | 21.7~25.2 nm | 球状WC粉 | [ |
Zr金属丝 | 电爆法 | 30.6~69.4 nm | 球状ZrO2粉 | [ |
ZrCl4 | 溶胶-凝胶法 | ~13 nm | 鹅卵石状ZrO2粉 | [ |
InCl3 | 水热法 | 70~80 nm | 立方体In2O3粉 | [ |
Ce(NO3)3·6H2O | 沉淀法 | 19 nm | 球状CeO2粉 | [ |
Ce(NO3)3·6H2O | 沉淀法 | 27 nm | 立方体CeO2粉 | [ |
HfCl4 | 沉淀法 | 200~300 nm | 类球状HfO2粉 | [ |
1 | POLINI R, MARCUCCI A, D’OTTAVI C, et al. Toward greener synthesis of WC powders for cemented tungsten carbides manufacturing[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(25): 8458-8466. |
2 | FAN X L, HUANG X W, LIU Q, et al. In-situ synthesis of ZrC in Cu melts using the graphite as the source of C[J]. Vacuum, 2019, 164: 198-204. |
3 | LIU H X, SONG W H, XU Q, et al. Low temperature electrochemical synthesis of nanostructured ZrC powder in molten salt[J]. International Journal of Electrochemical Science, 2020, 15(7): 6238-6248. |
4 | DHANUNJAYA M, BYRAM C, VENDAMANI V S, et al. Hafnium oxide nanoparticles fabricated by femtosecond laser ablation in water[J]. Applied Physics A, 2019, 125(1): 74. |
5 | MANGABABU A, SIANGLAM C, CHANDU B, et al. Effects of initial grain size and laser parameters on HfO2 nanoparticles prepared using femtosecond laser ablation in liquids[J]. Journal of Electronic Materials, 2021, 50(4): 1742-1751. |
6 | WANGLE T, PEETERS N, CAUTAERTS N, et al. Two-step alkaline thorium dioxide precipitation A low waste method for highly sinterable ThO2 [J]. Journal of Nuclear Materials, 2021, 552: 152984. |
7 | MENG D L, ZHAO Q Y, PAN X J, et al. Preparation of La2O3 by ion-exchange membrane electrolysis of LaCl3 aqueous solution[J]. Journal of Rare Earths, 2019, 37(9): 1009-1014. |
8 | 卢博, 刘宜强, 蒋威, 等. 大颗粒氧化镧粉体制备研究进展[J]. 稀土, 2022, 43(6): 119-124. |
LU B, LIU Y Q, JIANG W, et al. Research progress on preparation of large-grained lanthanum oxide powder[J]. Chinese Rare Earths, 2022, 43(6): 119-124 (in Chinese). | |
9 | MENG D L, ZHAO Q Y, PAN X J, et al. Preparation of CeO2 by ion-exchange membrane electrolysis method[J]. Hydrometallurgy, 2019, 186: 126-131. |
10 | BATIENKOV R V, BOL’SHAKOVA A N, EFIMOCHKIN I Y. Materials based on refractory metals for manufacturing high-temperature engineering components[J]. Metallurgist, 2018, 62(7): 801-808. |
11 | KAREER A, WAITE J C, LI B, et al. Short communication: ‘Low activation, refractory, high entropy alloys for nuclear applications’[J]. Journal of Nuclear Materials, 2019, 526: 151744. |
12 | PHILIPS N R, CARL M, CUNNINGHAM N J. New opportunities in refractory alloys[J]. Metallurgical and Materials Transactions A, 2020, 51(7): 3299-3310. |
13 | CHEN S H, QI C, LIU J Q, et al. Recent advances in W-containing refractory high-entropy alloys—An overview[J]. Entropy, 2022, 24(11): 1553. |
14 | DHOMNE S, MAHALLE A M. Thermal barrier coating materials for SI engine[J]. Journal of Materials Research and Technology, 2019, 8(1): 1532-1537. |
15 | PADTURE N P. Advanced structural ceramics in aerospace propulsion[J]. Nature Materials, 2016, 15(8): 804-809. |
16 | 赵传东, 李金燕, 张欢. 耐高温材料在航空发动机上的应用研究[J]. 内燃机与配件, 2021(18): 55-56. |
ZHAO C D, LI J Y, ZHANG H. Research on application of high temperature materials in aero-engine[J]. Internal Combustion Engine & Parts, 2021(18): 55-56 (in Chinese). | |
17 | HEMRAJ-BENNY T, TOBAR N, CARRERO N, et al. Microwave-assisted synthesis of single-walled carbon nanotube-supported ruthenium nanoparticles for the catalytic degradation of Congo red dye[J]. Materials Chemistry and Physics, 2018, 216: 72-81. |
18 | LI Q Q, ZHANG B C, WEN Y J, et al. A comprehensive study of tantalum powder preparation for additive manufacturing[J]. Applied Surface Science, 2022, 593: 153357. |
19 | 李会霞, 车倩颖, 程康康, 等. 增材制造技术制备钼材料的研究进展[J]. 热加工工艺, 2023, 52(3): 6-10, 16. |
LI H X, CHE Q Y, CHENG K K, et al. Research progress on molybdenum material fabricated by additive manufacturing[J]. Hot Working Technology, 2023, 52(3): 6-10, 16 (in Chinese). | |
20 | 张新, 林小辉, 高选乔, 等. 增材制造难熔金属材料及其应用研究进展[J]. 粉末冶金工业, 2022, 32(3): 18-22. |
ZHANG X, LIN X H, GAO X Q, et al. Refractory metal materials made by additive manufacturing and its application progress[J]. Powder Metallurgy Industry, 2022, 32(3): 18-22 (in Chinese). | |
21 | XIAO F N, MIAO Q, WEI S Z, et al. Microstructure and mechanical properties of W-ZrO2 alloys by different preparation techniques[J]. Journal of Alloys and Compounds, 2019, 774: 210-221. |
22 | CHEN G, LUO T, SHEN S C, et al. Tungsten particles reinforced high-entropy alloy matrix composite prepared by in situ reaction[J]. Journal of Alloys and Compounds, 2021, 862: 158037. |
23 | THAKRE P, YANG V. Chemical erosion of refractory-metal nozzle inserts in solid-propellant rocket motors[J]. Journal of Propulsion and Power, 2009, 25(1): 40-50. |
24 | HUANG Z Q, CAO C H, WANG Q X, et al. Multiscale plasmonic refractory nanocomposites for high-temperature solar photothermal conversion[J]. Nano Letters, 2022, 22(21): 8526-8533. |
25 | NIE M, DU S J, LI Q, et al. Tungsten carbide as supports for trimetallic AuPdPt electrocatalysts for methanol oxidation[J]. Journal of the Electrochemical Society, 2020, 167(4): 044510. |
26 | BABU P S, MADHAVI Y, KRISHNA L R, et al. Thermally-sprayed WC-based cermet coatings for corrosion resistance applications[J]. JOM, 2018, 70(11): 2636-2649. |
27 | REZAEI N, MUTAMBANENGWE R L, PEPPLEY B A. Study of electrochemical stability and physical characteristics of ball milled tantalum carbide as a support for oxygen evolution reaction electrocatalysts[J]. Ceramics International, 2021, 47(11): 15464-15470. |
28 | GHAHRAMANI Z, ARABI A M, SHAFIEE AFARANI M, et al. Solution combustion synthesis of cerium oxide nanoparticles as corrosion inhibitor[J]. International Journal of Applied Ceramic Technology, 2020, 17(3): 1514-1521. |
29 | RATNAYAKE S P, MANTILAKA M M M G P G, SANDARUWAN C, et al. Low-temperature thermocatalytic particulate carbon decomposition via urea solution-combustion derived CeO2 nanostructures[J]. Journal of Rare Earths, 2021, 39(1): 67-74. |
30 | GHAHRAMANI Z, ARABI A M, AFARANI M S, et al. Ceria particles synthesized via combustion method to inspire active protection for epoxy coating on mild steel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640: 128309. |
31 | CHAVHAN M P, SOM S, LU C H. Size-controlled ceria nanocubes obtained via hydrothermal route for electrochemical capacitors[J]. Materials Letters, 2019, 257: 126598. |
32 | XUE S F, LI Y J, ZHENG F H, et al. Characterization of CeO2 microspheres fabricated by an ultrasonic spray pyrolysis method[J]. Rare Metals, 2021, 40(1): 31-39. |
33 | SANE P K, TAMBAT S, SONTAKKE S, et al. Visible light removal of reactive dyes using CeO2 synthesized by precipitation[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4476-4489. |
34 | CHEN H H, JIANG Z H, LI X D, et al. Effect of cerium nitrate concentration on morphologies, structure and photocatalytic activities of CeO2 nanoparticles synthesized by microwave interface method[J]. Materials Letters, 2019, 257: 126666. |
35 | 任志东, 任萍, 李仲香, 等. 超细钽粉制备技术研究[J]. 有色金属(冶炼部分), 2020(10): 60-63. |
REN Z D, REN P, LI Z X, et al. Study on preparation process of ultra-fine tantalum powder[J]. Nonferrous Metals (Extractive Metallurgy), 2020(10): 60-63 (in Chinese). | |
36 | YAGOFAROV V Y, REVA V P, NAZARENKO A A, et al. Mechanochemical synthesis of hafnium carbide using amorphous carbon from plant materials[J]. Metallurgist, 2020, 63(11-12): 1144-1152. |
37 | AGHAMOHAMMADI H, HEIDARPOUR A. Morphological evolution of TiC particles with different stoichiometries by hydrofluoric acid etching treatment[J]. International Journal of Applied Ceramic Technology, 2021, 18(4): 1192-1204. |
38 | SUN G D, ZHANG G H. Novel pathway to prepare Mo nanopowder via hydrogen reduction of MoO2 containing Mo nanoseeds produced by reducing MoO3 with carbon black[J]. JOM, 2020, 72(1): 347-353. |
39 | ZHANG Y, JIAO S Q, CHOU K C, et al. Size-controlled synthesis of Mo powders via hydrogen reduction of MoO2 powders with the assistance of Mo nuclei[J]. International Journal of Hydrogen Energy, 2020, 45(3): 1435-1443. |
40 | MAI G P, ZHANG C, SONG J X, et al. Preparation of highly uniform molybdenum powder by the short-process reduction of molybdenum trioxide with hydrogen[J]. International Journal of Refractory Metals and Hard Materials, 2021, 100: 105644. |
41 | ZHANG H, LI Z B, ZHANG G H, et al. A novel method for preparing ultrafine molybdenum powder[J]. International Journal of Refractory Metals and Hard Materials, 2021, 96: 105491. |
42 | LIU X P, WANG K S, CHEN Q A, et al. Controllable preparation of spherical molybdenum nano-powders by one-step reduction of APM in radio frequency hydrogen plasma[J]. Materials, 2022, 15(6): 2019. |
43 | SUN G D, WANG K F, SONG C M, et al. A low-cost, efficient, and industrially feasible pathway for large scale preparation of tungsten nanopowders[J]. International Journal of Refractory Metals and Hard Materials, 2019, 78: 100-106. |
44 | HAN J Y, KANG H, JEONG Y K, et al. Synthesis and densification of nano-sized W powders prepared by hydrogen reduction of ball-milled WO3 powders[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(7): 4521-4524. |
45 | LÜ Z P, JIAN K L, DANG J. Effect of salt-assisted reduction method on morphologies and size of metallic tungsten particles[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(11): 3133-3146. |
46 | CHANG H Q, ZHANG G H, CHOU K C. CaO-assisted carbothermal reduction of MoS2 to synthesize molybdenum powder[J]. JOM, 2021, 73(8): 2540-2548. |
47 | SHMYGALEV A S, ISAKOV A V, ZAIKOV Y P, et al. Synthesis of tantalum powders in KBr-NaBr and KI-NaI melts using electrochemical pulverization[J]. ChemistrySelect, 2020, 5(37): 11463-11466. |
48 | AHMADI E, SUZUKI R O. Tantalum metal production through high-efficiency electrochemical reduction of TaS2 in molten CaCl2 [J]. Journal of Sustainable Metallurgy, 2021, 7(2): 437-447. |
49 | MATVEEV A E, NIKITIN P Y, ZHUKOV I A, et al. The use of plastic waste as carbon raw materials to obtain TiC-based powders[J]. Ceramics International, 2021, 47(15): 21140-21146. |
50 | GIZOWSKA M, PIĄTEK M, PERKOWSKI K, et al. Fabrication of nanoyttria by method of solution combustion synthesis[J]. Nanomaterials, 2020, 10(5): 831. |
51 | KE J G, LIU R, XIE Z M, et al. Preparation of nanoscale WC powders by sol-gel synthesis and carbon monoxide carbonization[J]. Materials Letters, 2022, 318: 132143. |
52 | DING X Q, MA J T, ZHAO X Y, et al. Preparation of CeO2 microspheres by internal gelation process with copolymerization using acrylic acid[J]. Ceramics International, 2019, 45(9): 11571-11577. |
53 | LIANG S S, SHEN L J, ZHOU C C, et al. Scalable preparation of hollow ZrO2 microspheres through a liquid-liquid phase reunion assisted sol-gel method[J]. Ceramics International, 2020, 46(9): 14188-14194. |
54 | TABASSUM N, KUMAR D, VERMA D, et al. Zirconium oxide (ZrO2) nanoparticles from antibacterial activity to cytotoxicity: A next-generation of multifunctional nanoparticles[J]. Materials Today Communications, 2021, 26: 102156. |
55 | KAYA E E, GÜRMEN S. A straightforward approach for the synthesis of nanostructured Y2O3 particles: Synthesis, morphology, microstructure and crystal imperfection[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115: 113668. |
56 | LAKSHMI R V, PAL K, MANDAL T K, et al. Multifunctional properties of ceria nanocubes synthesized by a hydrothermal method[J]. Bulletin of Materials Science, 2019, 42(5): 1-8. |
57 | CARREGOSA J D C, GRILO J P F, GODOI G S, et al. Microwave-assisted hydrothermal synthesis of ceria (CeO2): Microstructure, sinterability and electrical properties[J]. Ceramics International, 2020, 46(14): 23271-23275. |
58 | CHAVHAN M P, LU C H, SOM S. Urea and surfactant assisted hydrothermal growth of ceria nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601: 124944. |
59 | ABDELAAL H M. One-pot path for the synthesis of hollow zirconia sub-microspheres using hydrothermal approach[J]. Materials Letters, 2018, 212: 218-220. |
60 | SIGWADI R, DHLAMINI M, MOKRANI T, et al. Preparation of a high surface area zirconium oxide for fuel cell application[J]. International Journal of Mechanical and Materials Engineering, 2019, 14(1): 1-11. |
61 | YASNÓ J P, GUNNEWIEK R F K, KIMINAMI R H G A. Microwave synthesis of ultra-high temperature ceramic ZrC nanopowders[J]. Advanced Powder Technology, 2019, 30(7): 1348-1355. |
62 | LI X W, XIA X M, XU H L, et al. High-temperature high pressure synthesis of monoclinic Y2O3 [J]. Materials Letters, 2019, 239: 82-85. |
63 | ZHANG G H, LV P H, ZHAO P G, et al. Facile microwave-assisted synthesis of In2O3 nanocubes and their application in photocatalytic degradation of tetracycline[J]. RSC Advances, 2018, 8(52): 29578-29582. |
64 | CHEN K H, GUO S H, ZENG Y Q, et al. Facile preparation and characterization of lanthanum oxide powders by the calcination of lanthanum carbonate hydrate in microwave field[J]. Ceramics International, 2020, 46(1): 165-170. |
65 | SHOKRY H, ELKADY M, HAMAD H. Synthesis and characterization of stabilized tetragonal nano zirconia by precipitation method[J]. Journal of Nano Research, 2019, 56: 142-151. |
66 | BUINACHEV S, MASHKOVTSEV M A, ZHIRENKINA N, et al. A new approach for the synthesis of monodisperse zirconia powders with controlled particle size[J]. International Journal of Hydrogen Energy, 2021, 46(32): 16878-16887. |
67 | 郑艳玲, 柯兆华, 兰剑波, 等. 高松装密度的大颗粒氧化钇球形粉体制备[J]. 稀有金属与硬质合金, 2022, 50(3): 39-42, 56. |
ZHENG Y L, KE Z H, LAN J B, et al. Preparation of large particle yttrium oxide spherical powder with high bulk density[J]. Rare Metals and Cemented Carbides, 2022, 50(3): 39-42, 56 (in Chinese). | |
68 | DE FARIAS SOARES A, TATUMI S H, ROCCA R R, et al. Morphological and luminescent properties of HfO2 nanoparticles synthesized by precipitation method[J]. Journal of Luminescence, 2020, 219: 116866. |
69 | LI X, ZHANG C M, JIA X M, et al. Facile synthesis and size-dependent luminescence of gadolinium compounds with multiform morphologies and tunable particle sizes[J]. Journal of Luminescence, 2021, 239: 118339. |
70 | ZHANG U, YI W, XIN Z N, et al. Controllable morphology, size and inner structure of Ru particles prepared by spray-pyrolysis[J]. International Journal of Refractory Metals and Hard Materials, 2019, 78: 326-331. |
71 | MASLENNIKOV D V, MATVIENKO A A, CHIZHIK S A, et al. Synthesis and structural characterization of ceria nanoparticle agglomerates with shape inherited from an oxalate precursor[J]. Ceramics International, 2019, 45(3): 4137-4141. |
72 | 于万洋, 朱亮. 电爆法制备钽微米粉[J]. 金属功能材料, 2020, 27(5): 1-5. |
YU W Y, ZHU L. Tantalum micron powder by electrical explosion[J]. Metallic Functional Materials, 2020, 27(5): 1-5 (in Chinese). | |
73 | RANJAN P, KUROSAKI T, SUEMATSU H, et al. Formation of tungsten carbide nanoparticles by wire explosion process[J]. International Journal of Applied Ceramic Technology, 2020, 17(1): 304-310. |
74 | 王金相, 卢孚嘉, 彭楚才, 等. 乙醇中锆丝电爆炸法制备碳包覆ZrC纳米颗粒(英文)[J]. 稀有金属材料与工程, 2018, 47(6): 1749-1752. |
WANG J X, LU F J, PENG C C, et al. Fabrication of carbon encapsulated ZrC nanoparticles by electrical explosion of Zr wire in ethanol[J]. Rare Metal Materials and Engineering, 2018, 47(6): 1749-1752 (in Chinese). | |
75 | ZHANG J B, LI X W, SHI H T, et al. Understanding titanium carbide nanoparticle formation by an underwater electrical explosion process through experimental and modeling studies[J]. Physics of Plasmas, 2020, 27(2): 023510. |
76 | HAO Z H, FU Z H, LIU J T, et al. Spheroidization of a granulated molybdenum powder by radio frequency inductively coupled plasma[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82: 15-22. |
77 | QIU S, CHEN B K, XIANG C S. Preparation and properties of spherical Mo powders by plasma rotating electrode process for additive manufacturing[J]. Materials Science Forum, 2020, 993: 391-397. |
78 | CHEN L J, CHEN W B, LIU C D, et al. Estimation of plasma parameters in the process of micro-scale powder plastic and characteristics of its products[J]. Plasma Science and Technology, 2019, 21(7): 074006. |
79 | ZHANG Z L, WANG C, SUN Q, et al. Spheroidization of tungsten powder by a DC arc plasma generator with multiple cathodes[J]. Plasma Chemistry and Plasma Processing, 2022, 42(4): 939-956. |
80 | 李晓辉, 陈斌科, 凤治华, 等. 等离子旋转电极雾化制备钨粉及性能表征[J]. 粉末冶金工业, 2022, 32(1): 15-19. |
LI X H, CHEN B K, FENG Z H, et al. Preparation and properties of spherical tungsten powders by plasma rotating electrode process for additive manufacturing[J]. Powder Metallurgy Industry, 2022, 32(1): 15-19 (in Chinese). | |
81 | 张桃梅, 资旭辉, 程小凡, 等. 3D打印用球形钨、钽粉末的等离子球化工艺研究[J]. 中南大学学报(自然科学版), 2022, 53(7): 2439-2446. |
ZHANG T M, ZI X H, CHENG X F, et al. Plasma spheroidization of tungsten/tantalum powders for 3D printing[J]. Journal of Central South University (Science and Technology), 2022, 53(7): 2439-2446 (in Chinese). | |
82 | QIN Q, YANG F, SHI T, et al. Spheroidization of tantalum powder by radio frequency inductively coupled plasma processing[J]. Advanced Powder Technology, 2019, 30(8): 1709-1714. |
83 | 杨坤, 汤慧萍, 王建, 等. 射频等离子体制备球形钽粉及其性能表征[J]. 粉末冶金技术, 2020, 38(2): 138-142, 158. |
YANG K, TANG H P, WANG J, et al. Preparation and characterization of spherical tantalum powder by radio frequency plasma[J]. Powder Metallurgy Technology, 2020, 38(2): 138-142, 158 (in Chinese). | |
84 | HAO Z H, CHEN Y H, FU Z H, et al. A comparative study on spheroidization of sodium reduced and hydrogenation-dehydrogenation tantalum powder by RF plasma[J]. International Journal of Refractory Metals and Hard Materials, 2021, 100: 105624. |
85 | HWANG S M, WANG J P, LEE D W. Extraction of tantalum powder via the magnesium reduction of tantalum pentoxide[J]. Metals, 2019, 9(2): 205. |
86 | WANG L, ZHANG G H, XUE Z L, et al. Shape-controlled preparation of Mo powder by temperature-programmed reduction of MoO3 by NH3 [J]. Chemistry Letters, 2019, 48(5): 475-478. |
87 | DU C, PAN C L, PAN Y S, et al. Chemical vapor synthesis of ultrafine niobium powder via sodiothermic reduction of chloride[J]. Metallurgical and Materials Transactions B, 2020, 51(6): 2576-2584. |
88 | WAKISAKA T, KUSADA K, YAMAMOTO T, et al. Discovery of face-centred cubic Os nanoparticles[J]. Chemical Communications, 2020, 56(3): 372-374. |
89 | 范华全, 王富友, 何锐, 等. 3D打印多孔钽金属髋臼骨缺损假体的制备及其初步临床应用[J]. 陆军军医大学学报, 2022, 44(15): 1516-1522. |
FAN H Q, WANG F Y, HE R, et al. Preparation and preliminary clinical application of 3D printed porous tantalum prosthesis for reconstruction of acetabular bone defect[J]. Journal of Army Medical University, 2022, 44(15): 1516-1522 (in Chinese). | |
90 | 金园园, 贺卫卫, 陈斌科, 等. 球形难熔金属粉末的制备技术[J]. 航空制造技术, 2019, 62(22): 64-72. |
JIN Y Y, HE W W, CHEN B K, et al. Preparation of spherical refractory metal powders[J]. Aeronautical Manufacturing Technology, 2019, 62(22): 64-72 (in Chinese). | |
91 | 张庆磊, 郝振华, 李静, 等. 感应等离子体球化法制备球形金属粉体的研究进展[J]. 稀有金属材料与工程, 2020, 49(8): 2895-2903. |
ZHANG Q L, HAO Z H, LI J, et al. Research progress on preparation of spherical metal powders by induction plasma spheroidization[J]. Rare Metal Materials and Engineering, 2020, 49(8): 2895-2903 (in Chinese). | |
92 | 叶凯, 梁风, 姚耀春, 等. 热等离子体制备与球化超细难熔金属粉的研究进展[J]. 中国有色金属学报, 2020, 30(9): 2011-2021. |
YE K, LIANG F, YAO Y C, et al. Research progress of preparing and spheroidizing ultrafine refractory metal powder by thermal plasma[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(9): 2011-2021 (in Chinese). | |
93 | CHEN Z, QIN M L, YANG J J, et al. Effect of La2O3 addition on the synthesis of tungsten nanopowder via combustion-based method[J]. Journal of Materials Science & Technology, 2020, 58: 24-33. |
94 | 胡小锋, 许茜, 吴艳. 钽粉制备工艺研究进展[J]. 材料导报, 2005, 19(10): 97-99. |
HU X F, XU Q, WU Y. Research progress tantalum powder production technology[J]. Materials Review, 2005, 19(10): 97-99 (in Chinese). | |
95 | 杨国启, 何季麟, 郑爱国, 等. 电容器级高比容钽粉制备工艺研究进展[J]. 湖南有色金属, 2014, 30(1): 48-52. |
YANG G Q, HE J L, ZHENG A G, et al. Research progress of capacitor grade high capacitance tantalum powder preparation new technology[J]. Hunan Nonferrous Metals, 2014, 30(1): 48-52 (in Chinese). | |
96 | PAN F, DU Z, LI S F, et al. Preparation of nano-sized tungsten carbide via fluidized bed[J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 923-932. |
97 | PERVIKOV A V, KRINITCYN M G, GLAZKOVA E A, et al. Synthesis of tungsten carbide from bimodal tungsten powder produced by electrical explosion of wire[J]. International Journal of Refractory Metals and Hard Materials, 2022, 103: 105733. |
98 | NAIM KATEA S, RIEKEHR L, WESTIN G. Synthesis of nano-phase ZrC by carbothermal reduction using a ZrO2-carbon nano-composite[J]. Journal of the European Ceramic Society, 2021, 41(1): 62-72. |
99 | ZHAO L, LEE S, IONESCU E, et al. Effects of the number of benzene rings on the properties of single-source ZrC-based liquid precursors and nano zirconium carbide powders thereof[J]. Ceramics International, 2021, 47(23): 32963-32968. |
100 | JALALY M, GOTOR F J, SAYAGUÉS M J. Mechanochemical combustion synthesis of vanadium carbide (VC), niobium carbide (NbC) and tantalum carbide (TaC) nanoparticles[J]. International Journal of Refractory Metals and Hard Materials, 2019, 79: 177-184. |
101 | CHEN Y F, WANG M Y, LV A J, et al. Green preparation of vanadium carbide through one-step molten salt electrolysis[J]. Ceramics International, 2021, 47(20): 28203-28209. |
102 | CHEN H H, LUO S H, LEI X F, et al. Synthesis and photocatalytic performance of nano-CeO2 by a PVP-assisted microwave interface method for organic dye degradation[J]. Ionics, 2020, 26(11): 5829-5839. |
103 | BAO Z H, LI K, WANG S, et al. Preparation and characterization of submicron-cerium oxide by hypergravity coprecipitation method[J]. Advanced Powder Technology, 2021, 32(5): 1611-1618. |
104 | ZHU W Y, LIN Y Y, ZHU L, et al. Synthesis of cerium dioxide nanoparticles by gas/liquid pulsed discharge plasma in a slug flow reactor[J]. ACS Omega, 2021, 6(32): 20966-20974. |
105 | GOPAL R, JAIN J, GOYAL A, et al. Formation of nano-sized cubic zirconia by aqueous sol-gel route[J]. Journal of the Australian Ceramic Society, 2018, 54(4): 691-700. |
106 | 王金相, 彭楚才, 戴和华, 等. 锆丝电爆炸法制备氧化锆纳米颗粒及其特征[J]. 稀有金属材料与工程, 2019, 48(7): 2118-2121. |
WANG J X, PENG C C, DAI H H, et al. Synthesis of zirconium dioxide nanoparticles by electrical explosion of zirconium wire and characteristics[J]. Rare Metal Materials and Engineering, 2019, 48(7): 2118-2121 (in Chinese). | |
107 | GIBOT P, VIDAL L, LAFFONT L, et al. Zirconia nanopowder synthesis via detonation of trinitrotoluene[J]. Ceramics International, 2020, 46(17): 27057-27062. |
108 | DE BONA E, WALTER O, STÖRMER H, et al. Synthesis of nanostructured ThO2 pellets[J]. Journal of the American Ceramic Society, 2019, 102(7): 3814-3818. |
109 | WANG D H, SUN G D, ZHANG G H. Preparation of ultrafine Mo powders via carbothermic pre-reduction of molybdenum oxide and deep reduction by hydrogen[J]. International Journal of Refractory Metals and Hard Materials, 2018, 75: 70-77. |
110 | 毛新华, 刘辛, 雷超, 等. 选区激光熔化成形用钽粉的射频等离子体球化[J]. 稀有金属材料与工程, 2020, 49(6): 2076-2082. |
MAO X H, LIU X, LEI C, et al. RF plasma spheroidization of tantalum powder for selective laser melting[J]. Rare Metal Materials and Engineering, 2020, 49(6): 2076-2082 (in Chinese). | |
111 | NGUYEN T T D, CHOI H N, AHEMAD M J, et al. Hydrothermal synthesis of In2O3 nanocubes for highly responsive and selective ethanol gas sensing[J]. Journal of Alloys and Compounds, 2020, 820: 153133. |
112 | RAMACHANDRAN M, SUBADEVI R, SIVAKUMAR M. Role of pH on synthesis and characterization of cerium oxide (CeO2) nano particles by modified co-precipitation method[J]. Vacuum, 2019, 161: 220-224. |
113 | DUNCAN M A, BARNEY L, DIAS M R S, et al. Refractory metals and oxides for high-temperature structural color filters[J]. ACS Applied Materials & Interfaces, 2022, 14(50): 55745-55752. |
114 | ÖZEL F, ARKAN E, COSKUN H, et al. Refractory-metal-based chalcogenides for energy[J]. Advanced Functional Materials, 2022, 32(47): 202207705. |
115 | KNOWLES A J, DYE D, DODDS R J, et al. Tungsten-based bcc-superalloys[J]. Applied Materials Today, 2021, 23: 101014. |
116 | BONDARENKO Y A, KOLODYAZHNYY M Y, SUROVA V A. Creation of high-temperature heat-resistant alloys based on refractory matrices and natural composites[J]. Inorganic Materials: Applied Research, 2021, 12(5): 1157-1163. |
117 | BOGDAN M, BŁACHNIO J, SPYCHAŁA J, et al. Assessment of usability of the exploited gas turbine blade heat-resistant coatings[J]. Engineering Failure Analysis, 2019, 105: 337-346. |
118 | SOUZA A C, ROSSI J L, TSAKIROPOULOS P, et al. Microstructural evolution of the refractory WCuNi metallic alloy[J]. Metals and Materials International, 2021, 27(11): 4820-4830. |
[1] | Zhefeng YU, Shichang LIANG, Weibo SHI, Deyang TIAN, Anhua SHI, Dongjun LIAO, Ying YANG. Analysis and evaluation technology for optical radiation and radar scattering characteristics of HTV⁃2⁃like vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729465-729465. |
[2] | . Knowledge atlas analysis of AI-Driven multidisciplinary development of hypersonic aircrafts [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[3] | . Key Technologies and Challenges of High-Performance Servo Motor Pump [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[4] | . Research status and prospects of infrared multi-band imaging terminal guidance technology [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[5] | Yibin YE, Xichao TENG, Qifeng YU, Zhang LI. Optical⁃SAR image matching based on MatchNet and multi⁃point matching constraint [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 329162-329162. |
[6] | . A New Type of Numerical Calculation Method for the Thermodynamic Two-Temperature Model [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[7] | Qichang ZHAO, Yiquan WU, Yubin YUAN. Progress of ship detection and recognition methods in optical remote sensing images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 29025-029025. |
[8] | . Standard Modeling and solving methods for large-scale constellation collaborative scheduling for early warning scenarios [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[9] | . Study of Solid Rocket Motor Pressure Oscillations under Lateral Composite Overloads [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[10] | . Research status and Development Trend of Morphing Wingtip Technology [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[11] | . [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[12] | Li CHEN, Xiaoyun ZENG, Wen HUANG, Jianfei ZHANG. Lattice structure optimization design under harmonic base acceleration excitations [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529704-529704. |
[13] | Weihong ZHANG, Changhong TANG. Lightweighting of aerospace and aeronautical equipment: Challenges and perspectives [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529965-529965. |
[14] | . Research on the Evaluation Method of Laser Electromagnetic Ultrasonic Resonance for Metal Sheet Thickness [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
[15] | . Review on rotary ultrasonic machining of carbon fiber composites [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341