Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (S1): 730566.doi: 10.7527/S1000-6893.2024.30566
• Reviews • Previous Articles Next Articles
Kai AN1, Wei HUANG1(), Zhenguo WANG1, Xiaoping XU2, Yushan MENG1
Received:
2024-04-22
Revised:
2024-05-24
Accepted:
2024-06-19
Online:
2024-07-01
Published:
2024-07-01
Contact:
Wei HUANG
E-mail:gladrain2001@163.com
Supported by:
CLC Number:
Kai AN, Wei HUANG, Zhenguo WANG, Xiaoping XU, Yushan MENG. Knowledge atlas analysis of AI-driven multidisciplinary development of hypersonic aircrafts[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730566.
1 | 王振国, 梁剑寒, 范晓樯, 等. 吸气式高速飞行器一体化方案: 回顾与展望[J]. 空气动力学学报, 2023, 41(8): 13-25. |
WANG Z G, LIANG J H, FAN X Q, et al. Integrated scheme of air-breathing high-speed aircraft: Review and prospect[J]. Acta Aerodynamica Sinica, 2023, 41(8): 13-25 (in Chinese). | |
2 | 郑晓刚, 林德寿, 方啸雷, 等. 基于局部偏转吻切方法的背部进气高超飞行器一体化设计研究[J]. 空天技术, 2023, 455(5): 1-10. |
ZHENG X G, LIN D S, FANG X L, et al. Research on the integration design of hypersonic vehicles with dorsal inlets based on the local-turning osculating cones method[J]. Aerospace Technology, 2023, 455(5): 1-10 (in Chinese). | |
3 | 陈树生, 冯聪, 张兆康, 等. 基于全局/梯度优化方法的宽速域乘波-机翼布局气动设计[J]. 航空学报, 2024, 45(6): 629596. |
CHEN S S, FENG C, ZHANG Z K, et al. Aerodynamic design of wide-speed-range waverider-wing configuration based on global & gradient optimization method[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629596 (in Chinese). | |
4 | 侯强. 固体火箭超燃冲压发动机进排气系统设计及流场预测研究[D]. 南京: 南京航空航天大学, 2021: 1-101. |
HOU Q. Study on design of intake and exhaust system and flow field prediction of solid rocket scramjet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 1-101 (in Chinese). | |
5 | 杨超, 赵黄达, 吴志刚. 吸气式高超声速飞行器热气动弹性研究进展[J]. 北京航空航天大学学报, 2019, 45(10): 1911-1923. |
YANG C, ZHAO H D, WU Z G. Research progress of aerothermoelasticity of air-breathing hypersonic vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1911-1923 (in Chinese). | |
6 | 郭建国, 梁乐成, 周敏, 等. 高速飞行器俯冲段制导控制一体化综述[J]. 航空兵器, 2023, 30(1): 1-10. |
GUO J G, LIANG L C, ZHOU M, et al. Overview of integrated guidance and control for hypersonic vehicles in dive phase[J]. Aero Weaponry, 2023, 30(1): 1-10 (in Chinese). | |
7 | 张文敏, 王剑颖. 基于智能图搜索的滑翔式高超声速飞行器路径规划方法[J]. 飞控与探测, 2022, 5(6): 80-92. |
ZHANG W M, WANG J Y. Trajectory planning of hypersonic gliding vehicle based on smart graph search method[J]. Flight Control & Detection, 2022, 5(6): 80-92 (in Chinese). | |
8 | 姜志杰, 韩伟, 李怡庆, 等. 基于遗传算法的高超声速飞行器多学科优化设计[J]. 南昌航空大学学报(自然科学版), 2022, 36(2): 18-23. |
JIANG Z J, HAN W, LI Y Q, et al. Genetic algorithms based multidisciplinary design optimization of hypersonic vehicle concept design[J]. Journal of Nanchang Hangkong University (Natural Sciences), 2022, 36(2): 18-23 (in Chinese). | |
9 | 杨帆, 林明月, 胡宗民, 等 .基于机器学习的高速飞行器双曲率前缘气动热预测方法[J/OL].北京航空航天大学学报,(2023-02-14) [2024-02-14]. . |
YANG F, LIN M Y, HU Z M, et al. Fast prediction method of aero-heating of bi-curvature leading edge based on the machine learning[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2023-02-14) [2024-02-14]. (in Chinese). | |
10 | 刘紫寒, 武鹏飞, 李响, 等. 基于Social-LSTM和在线学习的复杂飞行器仿真模型智能校正方法[C]∥第三十四届中国仿真大会暨第二十一届亚洲仿真会议论文集. 长沙: 中国仿真学会, 2022. |
LIU Z H, WU P F, LI X, et al. Intelligent correction method for complex aircraft simulation model based on social-LSTM and online learning[C]∥ Proceedings of the 34th China Simulation Conference and the 21st Asian Simulation Conference. Changsha: China Simulation Institute, 2022 (in Chinese). | |
11 | 王煜林. 基于神经网络及其可解释原理的高超声速飞行器执行机构故障诊断方法研究[D]. 上海: 上海交通大学, 2022: 1-10. |
WANG Y L. Research on fault diagnosis method of hypersonic vehicle actuator based on neural network and its interpretable principle[D]. Shanghai: Shanghai Jiao Tong University, 2022: 1-10 (in Chinese). | |
12 | 唐志共, 朱林阳, 向星皓, 等. 智能空气动力学若干研究进展及展望[J]. 空气动力学学报, 2023, 41(7): 1-35. |
TANG Z G, ZHU L Y, XIANG X H, et al. Some research progress and prospect of intelligent aerodynamics[J]. Acta Aerodynamica Sinica, 2023, 41(7): 1-35 (in Chinese). | |
13 | GKIMISIS L, DIAS B, SCOGGINS J B, et al. Data-driven modeling of hypersonic reentry flow with heat and mass transfer[J]. AIAA Journal, 2023, 61(8): 3269-3286. |
14 | ZHANG T X, CHEN J Q, ZENG F Z, et al. Improvement of transition prediction model in hypersonic boundary layer based on field inversion and machine learning framework[J]. Physics of Fluids, 2023, 35(2): 024104. |
15 | DREYER E R, GRIER B J, MCNAMARA J J, et al. Rapid steady-state hypersonic aerothermodynamic loads prediction using reduced fidelity models[J]. Journal of Aircraft, 2021, 58(3): 663-676. |
16 | WANG M L, LI H X, CHEN X, et al. Deep learning-based model reduction for distributed parameter systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46(12): 1664-1674. |
17 | OMATA N, SHIRAYAMA S. A novel method of low-dimensional representation for temporal behavior of flow fields using deep autoencoder[J]. AIP Advances, 2019, 9(1): 015006. |
18 | FUKAMI K, FUKAGATA K, TAIRA K. Super-resolution reconstruction of turbulent flows with machine learning[J]. Journal of Fluid Mechanics, 2019, 870: 106-120. |
19 | WU H Z, LIU X J, AN W, et al. A deep learning approach for efficiently and accurately evaluating the flow field of supercritical airfoils[J]. Computers & Fluids, 2020, 198: 104393. |
20 | KASHEFI A, REMPE D, GUIBAS L J. A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries[J]. Physics of Fluids, 2021, 33(2): 027104. |
21 | SHEN Y, HUANG W, WANG Z G, et al. A deep learning framework for aerodynamic pressure prediction on general three-dimensional configurations[J]. Physics of Fluids, 2023, 35(10): 107111. |
22 | LI J X, LIU T Y, WANG Y Q, et al. Integrated graph deep learning framework for flow field reconstruction and performance prediction of turbomachinery[J]. Energy, 2022, 254: 124440. |
23 | ZUO K J, YE Z Y, ZHANG W W, et al. Fast aerodynamics prediction of laminar airfoils based on deep attention network[J]. Physics of Fluids, 2023, 35(3): 037127. |
24 | 黄章峰, 张宇琦. 高超声速三维边界层转捩数值研究进展及预测软件[J]. 空气动力学学报, 2023, 41( 11): 1-19. |
HUANG Z F, ZHANG Y Q. Numerical research progress and prediction software of transition in hypersonic three-dimensional boundary layers[J]. Acta Aerodynamica Sinica, 2023, 41( 11): 1-19 (in Chinese). | |
25 | LIANG S, XU B, ZHANG Y M. Robust self-learning fault-tolerant control for hypersonic flight vehicle based on ADHDP[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(9): 5295-5306. |
26 | YAN T, JIANG Z J, LI T, et al. Intelligent maneuver strategy for hypersonic vehicles in three-player pursuit-evasion games via deep reinforcement learning[J]. Frontiers in Neuroscience, 2024, 18: 1362303. |
27 | LI X, JI Y H, SONG Y, et al. Modified deep deterministic policy gradient based on active disturbance rejection control for hypersonic vehicles[J]. Neural Computing and Applications, 2024, 36(8): 4071-4081. |
28 | HU G J, GUO J G, GUO Z Y, et al. ADP-based intelligent tracking algorithm for reentry vehicles subjected to model and state uncertainties[J]. IEEE Transactions on Industrial Informatics, 2023, 19(4): 6047-6055. |
29 | BAO C Y, WANG P, TANG G J. Data-driven based model-free adaptive optimal control method for hypersonic morphing vehicle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3713-3725. |
30 | MU C X, NI Z, SUN C Y, et al. Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 584-598. |
31 | EMAMI S ALI, CASTALDI P, BANAZADEH A. Neural network-based flight control systems: Present and future[J]. Annual Reviews in Control, 2022, 53: 97-137. |
32 | LIU Y H, WANG H L, WU T C, et al. Attitude control for hypersonic reentry vehicles: An efficient deep reinforcement learning method[J]. Applied Soft Computing, 2022, 123: 108865. |
33 | GABY N, ZHANG F M, YE X J. Lyapunov-net: A deep neural network architecture for Lyapunov function approximation[C]∥ 2022 IEEE 61st Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2022: 2091-2096. |
34 | YANG L J, DAI H K, SHI Z X, et al. Lyapunov-stable neural control for state and output feedback: A novel formulation[DB/OL]. arXiv preprint: 2404.07956, 2024. |
35 | RUDY S H, BRUNTON S L, PROCTOR J L, et al. Data-driven discovery of partial differential equations[J]. Science Advances, 2017, 3(4): e1602614. |
36 | BAR-SINAI Y, HOYER S, HICKEY J, et al. Learning data-driven discretizations for partial differential equations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(31): 15344-15349. |
37 | RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. |
38 | RAMUHALLI P, UDPA L, UDPA S S. Finite-element neural networks for solving differential equations[J]. IEEE Transactions on Neural Networks, 2005, 16(6): 1381-1392. |
39 | ZHANG R, MENG Q, MA Z M. Deciphering and integrating invariants for neural operator learning with various physical mechanisms[J]. National Science Review, 2024, 11(4): nwad336. |
40 | MARKIDIS S. The old and the new: Can physics-informed deep-learning replace traditional linear solvers?[J]. Frontiers in Big Data, 2021, 4: 669097. |
41 | HAO Z K, LIU S M, ZHANG Y C, et al. Physics-informed machine learning: A survey on problems, methods and applications[DB/OL]. arXiv preprint: 2211.08064, 2022. |
42 | CHIU P H, WONG J C, OOI C, et al. CAN-PINN: A fast physics-informed neural network based on coupled-automatic-numerical differentiation method[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 395: 114909. |
43 | KHARAZMI E, ZHANG Z, KARNIADAKIS G E. Variational physics-informed neural networks for solving partial differential equations[DB/OL]. arXiv preprint: 1912.00873, 2019. |
44 | ZANG Y H, BAO G, YE X J, et al. Weak adversarial networks for high-dimensional partial differential equations[J]. Journal of Computational Physics, 2020, 411: 109409. |
45 | E W, YU B. The deep ritz method: A deep learning-based numerical algorithm for solving variational problems[J]. Communications in Mathematics and Statistics, 2018, 6(1): 1-12. |
46 | MOSELEY B, MARKHAM A, NISSEN-MEYER T. Finite basis physics-informed neural networks (FBPINNs): A scalable domain decomposition approach for solving differential equations[J]. Advances in Computational Mathematics, 2023, 49(4): 62. |
47 | WANG S F, WANG H W, PERDIKARIS P. On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 384: 113938. |
48 | DESAI S, MATTHEAKIS M, JOY H, et al. One-shot transfer learning of physics-informed neural networks[DB/OL]. arXiv preprint: 2110.11286, 2021. |
49 | CHAKRABORTY S. Transfer learning based multi-fidelity physics informed deep neural network[J]. Journal of Computational Physics, 2021, 426: 109942. |
50 | PSAROS A F, KAWAGUCHI K, KARNIADAKIS G E. Meta-learning PINN loss functions[J]. Journal of Computational Physics, 2022, 458: 111121. |
51 | LIU X, ZHANG X Y, PENG W, et al. A novel meta-learning initialization method for physics-informed neural networks[J]. Neural Computing and Applications, 2022, 34(17): 14511-14534. |
52 | 王嘉钰,颜力,安凯,等. 高超声速飞行器不确定性多学科设计优化综述[J]. 空天技术, 2022 (6): 1-11. |
WANG J Y, YAN L, AN K, et al. Review of uncertainty-based multidisciplinary design optimization for hypersonic vehicles[J]. Aerospace Technology, 2022, (6): 1-11 (in Chinese). | |
53 | LAI Z Q, WEI K X, FU Y, et al. ∇-prox: Differentiable proximal algorithm modeling for large-scale optimization[J]. ACM Transactions on Graphics, 2023, 42(4): 1-19. |
54 | BREVAULT L, BALESDENT M, MORIO J. 航空航天系统不确定性分析与优化[M]. 岳程斐, 吴凡, 沈强, 译. 北京: 国防工业出版社, 2023. |
BREVAULT L, BALESDENT M, MORIO J. Aerospace system analysis and optimization in uncertainty[M]. YUE C F, WU F, SHEN W,translated. Beijing: National Defense Industry Press, 2023 (in Chinese). | |
55 | 陈小前, 姚雯, 赵勇, 等. 飞行器多学科设计优化理论与应用研究[M]. 2版. 北京: 国防工业出版社, 2023. |
CHEN X Q, YAO W, ZHAO Y. Multidisciplinary design optimization of flight vehicles theory and applications[M]. 2nd ed. Beijing: National Defense Industry Press, 2023 (in Chinese). | |
56 | ZHOU T, PENG Y B. Gaussian process regression based on deep neural network for reliability analysis in high dimensions[J]. Structural and Multidisciplinary Optimization, 2023, 66(6): 131. |
57 | WU P, YUAN W Y, JI L L, et al. Missile aerodynamic shape optimization design using deep neural networks[J]. Aerospace Science and Technology, 2022, 126: 107640. |
58 | ZHU Y Y, PAN M X, ZHOU W X, et al. Intelligent direct thrust control for multivariable turbofan engine based on reinforcement and deep learning methods[J]. Aerospace Science and Technology, 2022, 131: 107972. |
59 | GENG X, LIU P Q, HU T X, et al. Multi-fidelity optimization of a quiet propeller based on deep deterministic policy gradient and transfer learning[J]. Aerospace Science and Technology, 2023, 137: 108288. |
60 | FUJIO C, OGAWA H. Deep-learning prediction and uncertainty quantification for scramjet intake flowfields[J]. Aerospace Science and Technology, 2022, 130: 107931. |
61 | 陈良臣, 傅德印. 面向小样本数据的机器学习方法研究综述[J]. 计算机工程, 2022, 48(11): 1-13. |
CHEN L C, FU D Y. Survey on machine learning methods for small sample data[J]. Computer Engineering, 2022, 48(11): 1-13 (in Chinese). |
[1] | Xiangying GUO, Jie XU, Yongchang HUANG. Characteristic analysis of large-scale wavelength protuberances wings near critical angle [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730557-730557. |
[2] | Tingyu GUO, Ming YAN, Chunlei XIE. Aerodynamic characteristics of aggregation-separation aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730596-730596. |
[3] | Xinrui ZHANG, Zhi XIONG, Bing HUA, Jun KANG, Huiyu HE. A heterogeneous multi-source integrated navigation method for cross-domain vehicles based on inertial/celestial deep fusion [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730614-730614. |
[4] | Liping WANG, Fuxin WANG, Hong LIU. Research progress on simulation methods of drop diameter distribution in supercooled large drop icing conditions [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730570-730570. |
[5] | Xuan GUO, Yanjie LIU, Hongquan LIU, Yinli ZHANG. Influence of thickness of curved laminate on mechanical behavior of butt-bolted joints [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730591-730591. |
[6] | Shasha YU, Xingyu CHEN. Key technological innovations and challenges in urban air mobility [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730657-730657. |
[7] | Chao AN, Rui ZHAO, Changchuan XIE, Chao YANG. Reduced-order modeling and aeroelastic analysis of geometrically nonlinear structures of large flexible wings [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730569-730569. |
[8] | Yongxin SHI, Kuo TIAN, Bo WANG. Topology optimization of aerospace axisymmetric structures based on bidirectional density function [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730585-730585. |
[9] | Hao HE, Peng WANG. Integrated guidance and control method for high-speed morphing wing aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730692-730692. |
[10] | Dong SUI, Zhipeng CUI. A method for determining capacity of air routes intersection based on carbon emissions [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730699-730699. |
[11] | Guangning LI, Kunpeng LEI, Xiaomin AN, Min XU, Yong XU. Numerical flight simulation of an airfoil with time varing Mach number effect acrossing transonic region [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730875-730875. |
[12] | Yunxia YOU, Zhouqin FAN, Weiqiang CHEN, Cheng CAO, Fanfu KONG. Numerical simulation of primary atomization for dual-stage swirl airblast atomizer [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730579-730579. |
[13] | Dapeng ZHOU, Xiaolei QU. Knowledge-based intelligent pigeon-inspired optimization of carrier-based aircraft landing control [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730801-730801. |
[14] | Guochen NIU, Xiangyu LUAN. A method for apron mapping based on feature point extraction and multi-sensor fusion [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730806-730806. |
[15] | Bo LI, Xiao WANG. Dynamic modeling and modal analysis of coaxial rotors/auxiliary propeller/drive train coupled system [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 528945-528945. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341