ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (11): 127634-127634.doi: 10.7527/S1000-6893.2022.27634
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Yue WANG1,2, Yunpeng WANG1,2(), Chun WANG1,2, Zonglin JIANG1,2
Received:
2022-06-16
Revised:
2022-06-16
Accepted:
2022-06-28
Online:
2023-06-15
Published:
2022-07-08
Contact:
Yunpeng WANG
E-mail:wangyunpeng@imech.ac.cn
Supported by:
CLC Number:
Yue WANG, Yunpeng WANG, Chun WANG, Zonglin JIANG. Numerical study of longitudinal stage separation for parallel-staged two-stage-to-orbit vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 127634-127634.
Table 2
Comparison of stage separation schemes for TSTO
分离方式 | 优点 | 缺点 |
---|---|---|
横向分离[ | 1.高动压条件下,可依靠气动力进行被动式自由分离 2.两级可以产生纵向和法向加速度之差 | 1.分离过程中两级间隙发生变化,从缝隙流到通道流演变,流场结构复杂 2.高动压条件下,两级间气动干扰较强,可能会导致严重的气动力/热载荷 3.分离时阻力较大,轨道级在分离过程中需要发动机点火平衡阻力[ 4.较强的非定常气动特性变化不利于两级平稳分离,甚至发生再附碰撞 5.安全分离条件比较苛刻,需要来流攻角、两级相对夹角等多条件共同影响和确定 |
纵向分离 | 1.分离过程两级间隙很小,流场结构简单 2.两级间干扰弱,无强气动流场干扰结构,气动力/热载荷较小,分离阻力小 3.两级气动特性变化平缓,尤其助推级气动特性,有利于平稳分离,数值与试验暂未发现两级会发生碰撞 4.安全分离条件宽松,基本可以由分离时的攻角决定 | 1.需要额外能源进行主动式纵向分离,比如轨道级可能需要在助推级背面由发动机或其他装置助推分离 2.分离时间基本由助推方式决定,可能分离时间较长 |
1 | 左光, 艾邦成. 先进空间运输系统气动设计综述[J]. 航空学报, 2021, 42(2): 624077. |
ZUO G, AI B C. Aerodynamic design of advanced space transportation system: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 624077 (in Chinese). | |
2 | 朱雄峰, 程洪玮, 刘阳, 等. 世界航天发射运输的发展趋势[J]. 科技导报, 2021, 39(11): 46-58. |
ZHU X F, CHENG H W, LIU Y, et al. Review and development perspective of the space launch and transportation system[J]. Science & Technology Review, 2021, 39(11): 46-58 (in Chinese). | |
3 | 阮建刚, 何国强, 吕翔. RBCC—RKT两级入轨飞行器飞行轨迹优化方法[J]. 航空学报, 2014, 35(5): 1284-1291. |
RUAN J G, HE G Q, LYU X. Trajectory optimization method in two-stage-to-orbit RBCC—RKT launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1284-1291 (in Chinese). | |
4 | 包为民, 汪小卫. 航班化航天运输系统发展展望[J]. 宇航总体技术, 2021, 5(3): 1-6. |
BAO W M, WANG X W. Prospect of airline-flight-mode aerospace transportation system[J]. Astronautical Systems Engineering Technology, 2021, 5(3): 1-6 (in Chinese). | |
5 | 赵文胜. 组合循环发动机科学研究技术路线的优化[J]. 科技导报, 2021, 39(17): 82-90. |
ZHAO W S. Research on R & D technical route of combined cycle engine[J]. Science & Technology Review, 2021, 39(17): 82-90 (in Chinese). | |
6 | ZHOU J X, XIAO Y T, LIU K, et al. Preliminary analysis for a two-stage-to-orbit reusable launch vehicle[C]∥ 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2015. |
7 | 王粤, 汪运鹏, 薛晓鹏, 等. TSTO马赫7安全级间分离问题的数值研究[J]. 力学学报, 2022, 54(2): 526-542. |
WANG Y, WANG Y P, XUE X P, et al. Numerical investigation on safe stage separation problem of a TSTO model at Mach 7[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 526-542 (in Chinese). | |
8 | 蒋海军, 阎超. 两级入轨飞行器激波间干扰绕流的数值模拟[C]∥第十三届全国激波与激波管学术会议论文集, 2008: 143-148. |
JIANG H J, YAN C. Numerical simulation of interaction flow between shock waves of two stage to orbit vehcle [C]∥The 13th National Conference on Shock Wave and Shock Tube, 2008: 143-148 (in Chinese). | |
9 | LIU Y, QIAN Z S, LU W B,et al. Numerical investigation on the safe stage-separation mode for a TSTO vehicle[J]. Aerospace Science and Technology, 2020, 107: 106349. |
10 | DECKER J P.Aerodynamic interference effects caused by parallel-staged simple aerodynamic configurations at Mach numbers of 3 and 6:NASA-TN-D-5379[R]. Washington, D.C.: NASA, 1969. |
11 | BORDELON W, FROST A, REED D. Stage separation wind tunnel tests of a generic TSTO launch vehicle[C]∥21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003. |
12 | OZAWA H, HANAI K, KITAMURA K, et al. Experimental investigation of shear-layer/body interactions in TSTO at hypersonic speeds[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
13 | CHENG J M, CHEN R Q, QIU R F,et al. Aerothermodynamic study of Two-Stage-To-Orbit system composed of wide-speed-range vehicle and rocket[J]. Acta Astronautica, 2020, 183: 330-345. |
14 | CVRLJE T, BREITSAMTER C, LASCHKA B. Numerical simulation of the lateral aerodynamics of an orbital stage at stage separation flow conditions[J]. Aerospace Science and Technology, 2000, 4(3): 157-171. |
15 | CVRLJE T, BREITSAMTER C, WEISHÄUPL C, et al. Euler and navier-stokes simulations of two-stage hypersonic vehicle longitudinal motions[J]. Journal of Spacecraft and Rockets, 2000, 37(2): 242-251. |
16 | 贾子安, 张陈安, 王柯穆, 等. 乘波布局高超声速飞行器纵向静稳定特性分析[J]. 中国科学: 技术科学, 2014, 44(10): 1114-1122. |
JIA Z A, ZHANG C A, WANG K M,et al. Longitudinal static stability analysis of hypersonic waveriders[J]. Scientia Sinica (Technologica), 2014, 44(10): 1114-1122 (in Chinese). | |
17 | 汪运鹏, 王粤, 姜宗林. 一种乘波基体构造方法、助推级飞行器以及机翼控制系统: CN114180100B[P]. 2022-04-29. |
WANG Y P, WANG Y, JIANG Z L. Wave-rider matrix construction method, booster aircraft and wing control system: CN114180100B[P]. 2022-04-29 (in Chinese). | |
18 | 汪运鹏, 王粤, 姜宗林. 一种宽速域飞行器乘波体构型设计方法: CN114186351A[P]. 2022-04-15. |
WANG Y P, WANG Y, JIANG Z L. Wide-speed-range aircraft waverider configuration design method: CN114186351A[P]. 2022-04-15 (in Chinese). | |
19 | 汪运鹏, 王粤, 姜宗林. 一种具有气动组合结构并联可重复使用的两级入轨飞行器: CN114162349B[P]. 2022-03-11. |
WANG Y P, WANG Y, JIANG Z L. Reusable two-stage injection aircraft with pneumatic combined structure connected in parallel: CN114162349B[P]. 2022-03-11 (in Chinese). | |
20 | SUTHERLAND W.The viscosity of gases and molecular force[J].Philosophical Magazine,1977,36:507-531. |
21 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
22 | CHAKRAVARTHY S. A unified-grid finite volume formulation for computational fluid dynamics[J]. International Journal for Numerical Methods in Fluids, 1999, 31(1): 309-323. |
23 | LUO H, BAUM J, LOHNER R. Extension of HLLC scheme for flows at all speeds[C]∥16th AIAA Computational Fluid Dynamics Conference.Reston: AIAA, 2003. |
24 | TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves, 1994, 4(1): 25-34. |
25 | EDWARDS J R. An implicit multigrid algorithm for computing hypersonic, chemically reacting viscous flows[J]. Journal of Computational Physics, 1996, 123(1): 84-95. |
26 | TIAN S L, FU J W, CHEN J T. A numerical method for multi-body separation with collisions[J]. Aerospace Science and Technology, 2021, 109: 106426. |
27 | ZAGHI S, DI MASCIO A, BROGLIA R, et al. Application of dynamic overlapping grids to the simulation of the flow around a fully-appended submarine[J]. Mathematics and Computers in Simulation, 2015, 116: 75-88. |
28 | SCHÜLEIN E. Skin friction and heat flux measurements in shock/boundary layer interaction flows[J]. AIAA Journal, 2006, 44(8): 1732-1741. |
29 | HEIM E R. CFD wing/ pylon/ finned store mutual interference wind tunnel experiment: AEDC-TSR-91-P4[R]. Arnold AFB: Arnold Engineering Development Center, 1991. |
30 | SNYDER D, KOUTSAVDIS E, ANTTONEN J. Transonic store separation using unstructured CFD with dynamic meshing[C]∥33rd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2003. |
31 | 沈清. TSTO级间分离气动问题与试验模型—大会特邀报告[C]∥第十二届全国实验流体力学学术会议, 2021. |
SHEN Q. Aerodynamic problems and test model for stage separation of TSTO-invited lecture[C]∥The 12th National Conference on Experimental Fluid Mechanics, 2021 (in Chinese). | |
32 | WEINGERTNER S. SAENGER - the reference concept of the German hypersonics technology program[C]∥5th International Aerospace Planes and Hypersonics Technologies Conference. Reston: AIAA, 1993. |
[1] | Shaoqiang HAN, Wenping SONG, Zhonghua HAN, Jianhua XU. High-accuracy numerical-simulation of unsteady flow over high-speed coaxial rigid rotors [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9): 529064-529064. |
[2] | Jiancheng ZHENG, Zhiguo QU, Xiansi TAN, Zhihuai LI, Gang ZHU, Lujun LI, Wei LIU. Resource management for hypersonic target detection by radar network based on responsibility area partitioning [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 329022-329022. |
[3] | Jinzhao DAI, Haixin CHEN. Optimization design method of three⁃dimensional wave cancellation biplane derived by shock⁃wave morphology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 628942-628942. |
[4] | Xiaoyong LIU, Mingfu WANG, Jianwen LIU, Xin REN, Xuan ZHANG. Review and prospect of research on scramjet [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529878-529878. |
[5] | Bo YANG, He YU, Zichen FAN. Micro-energy analysis method for time-varying error of aero-optical effects [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128703-128703. |
[6] | Xueliang LI, Chuangchuang LI, Wei SU, Jie WU. Experiment of influence of distributed roughness elements on hypersonic boundary layer instability [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128627-128627. |
[7] | Jiang LAI, Zhaolin FAN, Qian WANG, Siwei DONG, Fulin TONG, Xianxu YUAN. Direct numerical simulation of hypersonic cone-flare model at angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128610-128610. |
[8] | Youde XIONG, Chuangchuang LI, Zhenhui ZHANG, Jie WU. Measurement of freestream disturbance in hypersonic wind tunnel with hot-wire anemometer [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129042-129042. |
[9] | Weilin NI, Yonghai WANG, Cong XU, Fenghua CHI, Haizhao LIANG. Cooperative game guidance method for hypersonic vehicles based on reinforcement learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729400-729400. |
[10] | Zhefeng YU, Shichang LIANG, Weibo SHI, Deyang TIAN, Anhua SHI, Dongjun LIAO, Ying YANG. Analysis and evaluation technology for optical radiation and radar scattering characteristics of HTV⁃2⁃like vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729465-729465. |
[11] | Cheng ZHANG, Haoyuan REN, Tailong SHI, Wendi DAI. Multidisciplinary full-time coupling methods of folding fin containing non-linear connections and their applications [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729461-729461. |
[12] | Ping MA, Ning ZHANG, Anhua SHI, Zhefeng YU, Shichang LIANG, Jie HUANG. Transmission characteristics of typical band microwave in experiment⁃simulated plasma [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729476-729476. |
[13] | Yuemeng MA, Ming LIU, Ding YANG, Ming YANG, Mingang ZHANG, Yajie GE. Prescribed performance and anti⁃noise control of near space vehicle with thermal constraint [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729390-729390. |
[14] | Siyuan CHANG, Yao XIAO, Guangli LI, Zhongwei TIAN, Kaikai ZHANG, Kai CUI. Effect of wing dihedral and anhedral angles on hypersonic aerodynamic characteristics of high-pressure capturing wing configuration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127349-127349. |
[15] | Haoyu CHEN, Binwen WANG, Qiaozhi SONG, Xiaodong LI. Thermal flutter ground simulation test [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 227295-227295. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341