ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (11): 127619-127619.doi: 10.7527/S1000-6893.2022.27619
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Yatian ZHAO1, Zhiyuan SHAO2(), Chao YAN2, Xinghao XIANG3
Received:
2022-06-14
Revised:
2022-06-29
Accepted:
2022-08-10
Online:
2023-06-15
Published:
2022-08-31
Contact:
Zhiyuan SHAO
E-mail:zhiyuan_shao@126.com
Supported by:
CLC Number:
Yatian ZHAO, Zhiyuan SHAO, Chao YAN, Xinghao XIANG. Comparative analysis of Reynolds stress and eddy viscosity models in separation flow prediction[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 127619-127619.
1 | DRIVER D M, SEEGMILLER H L, MARVIN J G. Time-dependent behavior of a reattaching shear layer[J]. AIAA Journal, 1987, 25(7): 914-919. |
2 | BUSH R H, CHYCZEWSKI T S, DURAISAMY K, et al. Recommendations for future efforts in RANS modeling and simulation[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 0317. |
3 | EISFELD B, RUMSEY C, TOGITI V. Verification and validation of a second-moment-closure model[J]. AIAA Journal, 2016, 54(5): 1524-1541. |
4 | RUMSEY C L. Application of Reynolds stress models to separated aerodynamic flows[M]∥EISFELD B. Differential Reynolds Stress Modeling for Separating Flows in Industrial Aerodynamics. Cham: Springer, 2015: 19-37. |
5 | RUMSEY C L, RIVERS S M, MORRISON J H. Study of CFD variation on transport configurations from the second drag-prediction workshop[J]. Computers & Fluids, 2005, 34(7): 785-816. |
6 | WILCOX D C. Turbulence Modeling for CFD[M]. 3rd edition. San Diego: DCW Industries, 2006. |
7 | 董义道, 王东方, 王光学, 等. 雷诺应力模型的初步应用[J]. 国防科技大学学报, 2016, 38(4): 46-53. |
DONG Y D, WANG D F, WANG G X, et al. Preliminary application of Reynolds stress model[J]. Journal of National University of Defense Technology, 2016, 38(4): 46-53 (in Chinese). | |
8 | 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5): 829-857. |
YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5): 829-857 (in Chinese). | |
9 | SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences: NASA/CR-2014-218178[R]. Hampton: NASA Langley Research Center, 2014. |
10 | RUMSEY C, VATSA V. A comparison of the predictive capabilities of several turbulence models using upwind and central-difference computer codes[C]∥31st Aerospace Sciences Meeting. Reston: AIAA, 1993: 192. |
11 | WANG S Y, DONG Y D, DENG X G, et al. High-order simulation of aeronautical separated flows with a reynold stress model[J]. Journal of Aircraft, 2018, 55(3): 1177-1190. |
12 | 舒博文, 杜一鸣, 高正红, 等. 典型航空分离流动的雷诺应力模型数值模拟[J]. 航空学报, 2022, 43(11): 487-502. |
SHU B W, DU Y M, GAO Z H, et al. Numerical simulation of Reynolds stress model of typical aerospace separated flow[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 487-502 (in Chinese). | |
13 | 熊莉芳, 林源, 李世武. k⁃ε湍流模型及其在FLUENT软件中的应用[J]. 工业加热, 2007, 36(4): 13-15. |
XIONG L F, LIN Y, LI S W. k⁃ε turbulent model and its application to the FLUENT[J]. Industrial Heating, 2007, 36(4): 13-15 (in Chinese). | |
14 | MENTER F R, EGOROV Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description[J]. Flow, Turbulence and Combustion, 2010, 85(1): 113-138. |
15 | 刘宏康, 陈坚强, 向星皓, 等. 改进k⁃ω⁃γ转捩模式对不同雷诺数下HIAD的转捩预测[J]. 航空学报, 2022, 43(12): 126868. |
LIU H K, CHEN J Q, XIANG X H, et al. Transition prediction for HIAD at different Reynolds number by improved k⁃ω⁃γ transition model[J]. Acta Aeronautica et Astronautica Sinica,2022,43(12):126868 (in Chinese). | |
16 | GREENBLATT D, PASCHAL K B, YAO C S, et al. Experimental investigation of separation control part 1: baseline and steady suction[J]. AIAA Journal, 2006, 44(12): 2820-2830. |
17 | GREENBLATT D, PASCHAL K B, YAO C S, et al. Experimental investigation of separation control part 2: Zero mass-flux oscillatory blowing[J]. AIAA Journal, 2006, 44(12): 2831-2845. |
18 | BACHALO W D, JOHNSON D A. Transonic, turbulent boundary-layer separation generated on an axisymmetric flow model[J]. AIAA Journal, 1986, 24(3): 437-443. |
19 | Mayeur J, Dumont A, Destarac D, et al. RANS simulations on TMR test cases and M6 wing with the Onera elsA flow solver[J]. AIAA Paper, 2015, 1745: 2015. |
20 | DEMUREN A, SARKAR S. Systematic study of Reynolds stress closure models in the computations of plane channel flows[R]. Hampton: Institute for Computer Applications in Science and Engineering, 1992. |
21 | PANDA J P, WARRIOR H V, MAITY S, et al. An improved model including length scale anisotropy for the pressure strain correlation of turbulence[J]. Journal of Fluids Engineering, 2017, 139(4): 044503. |
22 | LAUNDER B E, REECE G J, RODI W. Progress in the development of a Reynolds-stress turbulence closure[J]. Journal of Fluid Mechanics, 1975, 68(3): 537-566. |
23 | SPEZIALE C G, SARKAR S, GATSKI T B. Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach[J]. Journal of Fluid Mechanics, 1991, 227: 245-272. |
24 | CÉCORA R D, RADESPIEL R, EISFELD B, et al. Differential Reynolds-stress modeling for aeronautics[J]. AIAA Journal, 2014, 53(3): 739-755. |
25 | 王圣业, 符翔, 杨小亮, 等. 高阶矩湍流模型研究进展及挑战[J]. 力学进展, 2021, 51(1): 29-61. |
WANG S Y, FU X, YANG X L, et al. Progresses and challenges of high-order-moment turbulence closure[J]. Advances in Mechanics, 2021, 51(1): 29-61 (in Chinese). | |
26 | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
27 | GALVÁN S, REGGIO M, GUIBAULT F. Assessment study of K-ɛ turbulence models and near-wall modeling for steady state swirling flow analysis in draft tube using fluent[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(4): 459-478. |
28 | TOMINAGA Y, STATHOPOULOS T. Numerical simulation of dispersion around an isolated cubic building: comparison of various types of k⁃ɛ models[J]. Atmospheric Environment, 2009, 43(20): 3200-3210. |
29 | WILCOX D C. Formulation of the k-w turbulence model revisited[J]. AIAA Journal, 2008, 46(11): 2823-2838. |
30 | BRADSHAW P, FERRISS D H, ATWELL N P. Calculation of boundary-layer development using the turbulent energy equation[J]. Journal of Fluid Mechanics, 1967, 28(3): 593. |
31 | KAEWBUMRUNG, TANGSOPA, THONGSRI. Investigation of the trailing edge modification effect on compressor blade aerodynamics using SST k⁃ω turbulence model[J]. Aerospace, 2019, 6(4): 48. |
32 | ZHAO Y T, YAN C, WANG X Y, et al. Uncertainty and sensitivity analysis of SST turbulence model on hypersonic flow heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 136: 808-820. |
[1] | Li NONG, Zishuai SHENG, Jun XIAN, Huaibao ZHANG. Numerical simulation of separated flow around iced airfoil based on high⁃order schemes [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 729291-729291. |
[2] | Yu ZENG, Hongbo WANG, Mingbo SUN, Chao WANG, Xu LIU. SST turbulence model improvements: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 27411-027411. |
[3] | ZHANG Haoyuan, SUN Dong, QIU Bo, ZHU Yandan, WANG Anling. Influence of turbulent kinetic energy on shock wave/boundary layer interaction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 125504-125504. |
[4] | SHU Bowen, DU Yiming, GAO Zhenghong, XIA Lu, CHEN Shusheng. Numerical simulation of Reynolds stress model of typical aerospace separated flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526385-526385. |
[5] | WEI Ziyan, LI Jie, ZHANG Heng, YANG Zhao. Improved aerodynamic design of laminar wing section of laminar verifying aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526760-526760. |
[6] | ZHANG Heng, LI Jie, GONG Zhibin. Numerical simulation of separated flow around a multi-element airfoil at high angle of attack with iced slat [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(2): 520733-520746. |
[7] | XU Xiao, YUE Lianjie, LU Hongbo, XIAO Yabin, ZHANG Xinyu. Flow characteristics of hypersonic inlet starting with diaphragm rupture [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(6): 1795-1804. |
[8] | WANG Bin, LI Huaxing. Control of flow turbulent kinetic energy by plasma [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(12): 3809-3821. |
[9] | Xiang Xiaorong;Liu Bo;Wang Qingwei;Chen Yunyong. Flow Characteristics of Stator Wake in Small Axial Compressor [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(11): 2045-2051. |
[10] | CUI Yu-feng;XU Gang;HUANG Wei-guang. Numerical Simulation on Supersonic Combustion over a Reward Facing Step with Transverse Hydrogen and Air Injection [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2004, 25(2): 113-116. |
[11] | Xiao Po;Li Yuchun;Xu Liping. A METHOD FOR MEASURING UNSTEADY SEPARATION TURBULKNT FLOW USING SPLIT-FILM [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(12): 1438-1444. |
[12] | E Qin;LiLi;YangMenghui. AN IMPROVED INTEGRAL METHOD FOR TWO-DIMENSIONAL COMPRESSIBLETURBULENT BOUNDARY-LAYER [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1994, 15(11): 1375-1378. |
[13] | Lu Xi-yun;Zhuang Li-xian;Yin Xie-yuan;Tong Bing-gang. NUMERICAL SIMULATION OF FLOWS PAST A LONGITUDINALLY OSCILLATING AIRFOIL AT HIGH INCIDENCES [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(11): 632-635. |
[14] | Li Feng;Wang Yi-yun;Cui Er-jie. AERODYNAMIC INVESTIGATION ON INTERACTION OF VORTEX WITH STATIONARY AIRFOIL [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(11): 625-628. |
[15] | Zhou Wei-jiang;Ma Han-dong;Ma Yan-wen. NUMERICAL STUDY OF SUPERSONIC FLOW OVER A BACKWARD STEP WITH TRANSVERSE INJECTION [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1993, 14(1): 14-19. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 198
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 732
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341