1 |
李洁. 基于曲壳模型的波箔气体动压轴承承载特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
LI J. Research on bearing characteristics of bump foil air bearing based on curve shell model[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
|
2 |
CHEN G D, JU B F, FANG H, et al. Air bearing: Academic insights and trend analysis[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(3): 1191-1202.
|
3 |
陈元先. 旅客机环境控制系统的发展[J]. 航空学报, 1999, 20(): 8-10.
|
|
CHEN Y X. Evolution of the environmental control systems for commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(Sup 1): 8-10. (in Chinese)
|
4 |
王继尧, 龙威, 吴蜜蜜, 等. 载荷分布对空气静压轴承振动特性的实验[J]. 航空学报, 2020, 41(8): 223679.
|
|
WANG J Y, LONG W, WU M M, et al. Experiment of load distribution on micro-vibration characteristics of aerostatic bearings[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 223679 (in Chinese).
|
5 |
李旺. 动压气体轴承周向变截面间隙内流动特性研究[D]. 南京: 南京航空航天大学, 2019.
|
|
LI W. Research on flow characteristics of aerodynamic bearings with variable cross sectional clearance[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese) .
|
6 |
姬增起. 小间隙内泰勒库特流的实验研究与数值模拟[D]. 武汉: 华中科技大学, 2018.
|
|
JI Z Q. Research of experiment and simulation on the Taylor-couette flow in small gap[D]. Wuhan: Huazhong University of Science and Technology, 2018 (in Chinese).
|
7 |
FUKUI S, KANEKO R. Analysis of ultra-thin gas film lubrication based on linearized boltzmann equation: first report-Derivation of a generalized lubrication equation including thermal creep flow[J]. Journal of Tribology, 1988, 110(2): 253-261.
|
8 |
MCNEILLY V H. Discussion: The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearings[J]. Journal of Basic Engineering, 1959, 81(1): 94-98.
|
9 |
HSIA Y T, DOMOTO G A. An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances[J]. Journal of Lubrication Technology, 1983, 105(1): 120-129.
|
10 |
MITSUYA Y. Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coefficient[J]. Journal of Tribology, 1993, 115(2): 289-294.
|
11 |
冯凯, 王乾振, 李文俊, 等. 考虑滑移流影响的新型弹性支承微型箔片动压气浮轴承的性能分析[J]. 机械工程学报, 2017, 53(17): 103-112.
|
|
FENG K, WANG Q Z, LI W J, et al. Static and dynamic performance analysis of a novel mesoscale gas foil bearings consider the effect of slip flow[J]. Journal of Mechanical Engineering, 2017, 53(17): 103-112 (in Chinese).
|
12 |
黄海, 孟光, 赵三星, 等. 滑移边界对微型气浮轴承稳态性能的影响[J]. 机械工程学报, 2006, 42(): 21-25.
|
|
HUANG H, MENG G, ZHAO S X, et al. Effects of slip flow on steady performance of micro gas bearing[J]. Chinese Journal of Mechanical Engineering, 2006, 42(Sup 1): 21-25 (in Chinese).
|
13 |
WU L. A slip model for rarefied gas flows at arbitrary Knudsen number[J]. Applied Physics Letters, 2008, 93(25): 253103.
|
14 |
兰正义, 伍林. 稀薄效应对动压气体轴承静动特性的影响[J]. 润滑与密封, 2020, 45(2): 81-87.
|
|
LAN Z Y, WU L. Effect of rarefied gas effect on static and dynamic characteristics of micro self-acting bearings[J]. Lubrication Engineering, 2020, 45(2): 81-87 (in Chinese).
|
15 |
燕震雷, 伍林. 稀薄效应对可倾瓦动压气体轴承性能的影响[J]. 航空动力学报, 2020, 35(7): 1496-1505.
|
|
YAN Z L, WU L. Effect of rarefied effect on the performance of tilting pad dynamic pressure gas bearings[J]. Journal of Aerospace Power, 2020, 35(7): 1496-1505 (in Chinese).
|
16 |
SMITH F W. Lubricant behavior in concentrated contact-Some rheological problems[J]. ASLE Transactions, 1960, 3(1): 18-25.
|
17 |
SPIKES H, GRANICK S. Equation for slip of simple liquids at smooth solid surfaces[J]. Langmuir, 2003, 19(12): 5065-5071.
|
18 |
马国军. 微纳米间隙流动的边界滑移及其流体动力学研究[D]. 大连: 大连理工大学, 2007.
|
|
MA G J. Boundary slip and hydrodynamics of fluid flow in a micro/nano-gap[D]. Dalian: Dalian University of Technology, 2007 (in Chinese).
|
19 |
王丽丽, 路长厚, 马金奎, 等. 滑动轴承二维流场的滑移现象研究[J]. 机械工程学报, 2012, 48(7): 105-112.
|
|
WANG L L, LU C H, MA J K, et al. Study on two-dimensional wall slip of sleeve bearing[J]. Journal of Mechanical Engineering, 2012, 48(7): 105-112 (in Chinese).
|
20 |
张镜洋, 赵晓荣, 常海萍, 等. 边界滑移对波箔型动压气体轴承静特性的影响[J]. 推进技术, 2018, 39(2): 388-395.
|
|
ZHANG J Y, ZHAO X R, CHANG H P, et al. Effects of sliding boundary on static characteristics of aerodynamic compliant foil bearing[J]. Journal of Propulsion Technology, 2018, 39(2): 388-395 (in Chinese).
|
21 |
BHATTACHARYA A, DUTT J K, PANDEY R K. Influence of hydrodynamic journal bearings with multiple slip zones on rotordynamic behavior[J]. Journal of Tribology, 2017, 139(6): 061701.
|
22 |
RAO T, RANI A M A, MOHAMED N M, et al. Static and stability analysis of partial slip texture multi-lobe journal bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234(4): 567-587.
|
23 |
胡嘉麟, 高金海, 黄恩亮, 等. 滑移边界对空气轴承性能的影响研究[J]. 推进技术, 2017, 38(6): 1359-1369.
|
|
HU J L, GAO J H, HUANG E L, et al. Effects of slip boundary on air bearing performance[J]. Journal of Propulsion Technology, 2017, 38(6): 1359-1369 (in Chinese).
|
24 |
于勇, 雷娟棉. 流体力学基础[M]. 北京: 北京理工大学出版社, 2017: 8-75.
|
|
YU Y, LEI J M. Fundamentals of fluid mechanics[M]. Beijing: Beijing Insititute of Technology Press, 2017: 8-75 (in Chinese).
|
25 |
RUSCITTO D, MCCORMICK J, GRAY S. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 1: Journal bearing performanc: NASA-CR-135368[R]. Washington,D.C.: NASA, 1978.
|