[1] 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3):426-443. BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3):426-443(in Chinese). [2] 王彬文, 杨宇, 钱战森, 等. 机翼变弯度技术研究进展[J]. 航空学报, 2022,43(1):024943. WANG B W, YANG Y,QIAN Z S, et al. Review of technical development of variable camber wing[J]. Acta Aeronautica et Astronautica Sinica, 2022,43(1):024943(in Chinese). [3] LI D C, ZHAO S W, DA RONCH A, et al. A review of modelling and analysis of morphing wings[J]. Progress in Aerospace Sciences, 2018, 100:46-62. [4] SANTER M, PELLEGRINO S. Topological optimization of compliant adaptive wing structure[J]. AIAA Journal, 2009, 47(3):523-534. [5] KOTA S, ERVIN G F, LO J H, et al. Edge morphing arrangement for an airfoil:US11174002[P]. 2021-11-16. [6] TONG X, GE W, GAO X, et al. Simultaneous optimization of fiber orientations and topology shape for composites compliant leading edge[J]. Journal of Reinforced Plastics and Composites, 2019, 38(15):706-716. [7] TONG X X, GE W J, SUN C, et al. Topology optimization of compliant adaptive wing leading edge with composite materials[J]. Chinese Journal of Aeronautics, 2014, 27(6):1488-1494. [8] TONG X X, GE W J, YUAN Z Y, et al. Integrated design of topology and material for composite morphing trailing edge based compliant mechanism[J]. Chinese Journal of Aeronautics, 2021, 34(5):331-340. [9] ZHANG Y, GE W, ZHANG Z, et al. Design of compliant mechanism-based variable camber morphing wing with nonlinear large deformation[J]. International Journal of Advanced Robotic Systems, 2019, 16(6):1729881419-88674. [10] DE GASPARI A, RICCI S. A two-level approach for the optimal design of morphing wings based on compliant structures[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(10):1091-1111. [11] DE GASPARI A, RICCOBENE L, RICCI S. Design, manufacturing and wind tunnel validation of a morphing compliant wing[J]. Journal of Aircraft, 2018, 55(6):2313-2326. [12] CAVALIERI V, DE GASPARI A, RICCI S. Optimization of compliant adaptive structures in the design of a morphing droop nose[J]. Smart Materials and Structures, 2020, 29(7):075020. [13] ZHANG Z, GASPARI A D, RICCI S. Comparison between density-based and load-path-based method in various camber aerofoil design[C]//25th Italian Association of Aeronautics and Astronautics,2019. [14] YANG Y, WANG Z G, LYU S S. Comparative study of two lay-up sequence dispositions for flexible skin design of morphing leading edge[J]. Chinese Journal of Aeronautics, 2021, 34(7):271-278. [15] 王宇, 黄东东, 郭士钧, 等. 变体机翼后缘多学科设计与优化[J]. 南京航空航天大学学报, 2021, 53(3):415-424. WANG Y, HUANG D D, GUO S J, et al. Multidisciplinary design and optimization of trailing edge of morphing wing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(3):415-424(in Chinese). [16] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1):142-158. [17] EITER T, MANNILA H. Computing discrete fréchet distance[J]. Notes, 1994, 94:64. [18] ZHANG Z, DE GASPARI A, RICCI S, et al. Gradient-based aerodynamic optimization of an airfoil with morphing leading and trailing edges[J]. Applied Sciences, 2021, 11(4):1929. [19] ZHANG Z, SONG C, YANG C, et al. combining density-based approach and optimization refinement in the design of morphing airfoil structures[C]//AIAA SciTech 2020 Forum. Reston:AIAA, 2020. |