ACTA AERONAUTICAET ASTRONAUTICA SINICA ›› 2023, Vol. 44 ›› Issue (8): 27265-027265.doi: 10.7527/S1000-6893.2022.27265
• Reviews • Previous Articles Next Articles
Xianzhong GAO, Xiaolong DENG, Yujie WANG, Zheng GUO, Zhongxi HOU()
Received:
2022-04-08
Revised:
2022-05-06
Accepted:
2022-05-30
Online:
2023-04-25
Published:
2022-06-08
Contact:
Zhongxi HOU
E-mail:hzx@nudt.edu.cn
Supported by:
CLC Number:
Xianzhong GAO, Xiaolong DENG, Yujie WANG, Zheng GUO, Zhongxi HOU. General planning method for energy optimal flight path of solar⁃powered aircraft in near space[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 27265-027265.
Table 1
Design parameter and flight test data of near⁃space solar⁃powered aircraft[9]
图片 | 名称 | 国家 | 翼展/m | 质量/kg | 构型 | 试验年份 | 持续飞行时间 | 最大飞行高度/km |
---|---|---|---|---|---|---|---|---|
AtlantikSolar | 瑞士 | 5.65 | 6.8 | 常规 | 2015 | 81.5 h | ||
Solara 50 | 美国 | 50 | 159 | 常规 | 2015 | 4 min 16 s | 0.158 | |
Owl | 俄罗斯 | 9.5 | 11.8 | 常规 | 2016 | 50 h | 9 | |
EVA-3 | 韩国 | >20 | 53 | 常规 | 2016 | 90 min | 18.5 | |
Aquila | 美国 | 43 | 453 | 飞翼 | 2016 | 96 min | 0.65 | |
彩虹-9 | 中国 | 45 | 常规 | 2017 | 15 h | >20 | ||
ApusDuo | 美国 | 14 | 23 | 串列翼 | 2018 | 0.02 | ||
StratoAirNet | 美国 | 15 | 固定翼 | 2018 | ~1 | |||
Zephyr-S | 英国 | 25 | 75 | 常规 | 2018 2021 | 26 d 36 d | 22.5 23.2 |
1 | 朱雄峰, 郭正, 侯中喜, 等. 太阳能飞行器设计域分析和总体设计方法[J]. 宇航学报, 2014, 35(7): 735-742. |
ZHU X F, GUO Z, HOU Z X, et al. Design domain analysis and conceptual design method of solar-powered vehicle[J]. Journal of Astronautics, 2014, 35(7): 735-742 (in Chinese). | |
2 | REDDY K, POONDLA A. Performance analysis of solar powered Unmanned Aerial Vehicle[J]. Renewable Energy, 2017, 104: 20-29. |
3 | 张健, 王江三, 耿延升, 等. 高空长航时太阳能无人机的技术挑战[J]. 航空科学技术, 2020, 31(4): 14-20. |
ZHANG J, WANG J S, GENG Y S, et al. Technology challenges for high altitude long endurance solar powered UAV[J]. Aeronautical Science & Technology, 2020, 31(4): 14-20 (in Chinese). | |
4 | NOLL T E, BROWN J M, PEREZ-DAVIS M E, et al. Investigation of the helios prototype aircraft mishap report[R]. Washington, D.C.: NASA Langley Research Center, 2004. |
5 | 郭正, 朱雄峰, 侯中喜. 太阳能飞机: 基于广义能源的总体参数设计[M]. 北京: 科学出版社, 2021. |
GUO Z, ZHU X F, HOU Z X. Solar-powered aircraft[M]. Beijing: Science Press, 2021 (in Chinese). | |
6 | NOLL T E, ISHMAEL S D, HENWOOD B, et al. Technical findings, lessons learned, and recommendations resulting from the helios prototype vehicle mishap: RTO-MP-AVT-145 [R]. Washington, D.C.: NASA Langley Research Center, 2007. |
7 | ZHU X F, GUO Z, FAN R F, et al. How high can solar-powered airplanes fly[J]. Journal of Aircraft, 2014, 51(5): 1653-1659. |
8 | WU M J, SHI Z W, XIAO T H, et al. Energy optimization and investigation for Z-shaped Sun-tracking morphing-wing solar-powered UAV[J]. Aerospace Science and Technology, 2019, 91: 1-11. |
9 | 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418. |
MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418 (in Chinese). | |
10 | GUO Z, CHEN X K, HOU Z X, et al. Development of a solar electric powered UAV for long endurance flight[C]∥ 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2011: 6966. |
11 | NI W J, BI Y, WU D,et al. Energy-optimal trajectory planning for solar-powered aircraft using soft actor-critic[J]. Chinese Journal of Aeronautics, 2022, 35(10): 337-353. |
12 | ZHANG Z J, ZHANG R, ZHU J,et al. Integrated batteries layout and structural topology optimization for a solar-powered drone[J]. Chinese Journal of Aeronautics, 2021, 34(7): 114-123. |
13 | 仲维国, 郭有光, 张凯. 太阳能飞机循环飞行的高度剖面能量策略[J]. 航空学报, 2020, 41(3): 623429. |
ZHONG W G, GUO Y G, ZHANG K. Energy strategy on altitude profile for cycle flight of solar powered aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623429 (in Chinese). | |
14 | 马东立, 包文卓, 乔宇航. 基于重力储能的太阳能飞机飞行轨迹研究[J]. 航空学报, 2014, 35(2): 408-416. |
MA D L, BAO W Z, QIAO Y H. Study of flight path for solar-powered aircraft based on gravity energy reservation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 408-416 (in Chinese). | |
15 | 昂海松. 太阳能无人机[J]. 电子产品世界, 2015, 22(8): 24-26, 33. |
ANG H S. Solar powered UAV[J]. Electronic Engineering & Product World, 2015, 22(8): 24-26, 33 (in Chinese). | |
16 | WU M, SHI Z, XIAO T,et al. Flight trajectory optimization of Sun-tracking solar aircraft under the constraint of mission region[J]. Chinese Journal of Aeronautics, 2021, 34(11): 140-153. |
17 | WU M, SHI Z, XIAO T,et al. Effect of wingtip connection on the energy and flight endurance performance of solar aircraft[J]. Aerospace Science and Technology, 2021, 108: 106404. |
18 | 王春阳, 周洲, 王睿. 基于最长航时的太阳能无人机操纵策略研究[J]. 西北工业大学学报, 2020, 38(1): 75-83. |
WANG C Y, ZHOU Z, WANG R. Study on operation strategy of solar-powered UAV based on longest endurance[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 75-83 (in Chinese). | |
19 | CHANDRASEKHARAN S, GOMEZ K, AL-HOURANI A, et al. Designing and implementing future aerial communication networks[J]. IEEE Communications Magazine, 2016, 54(5): 26-34. |
20 | 朱立宏, 孙国瑞, 呼文韬, 等. 太阳能无人机能源系统的关键技术与发展趋势[J]. 航空学报, 2020, 41(3): 623503. |
ZHU L H, SUN G R, HU W T, et al. Key technology and development trend of energy system in solar powered unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623503 (in Chinese). | |
21 | NOTH A. Design of solar powered airplanes for continuous flight[D]. Switzerland:ETH Zurich,2008. |
22 | KLESH A T, KABAMBA P T. Solar-powered aircraft: Energy-optimal path planning and perpetual endurance[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1320-1329. |
23 | SPANGELO S C, GILBERT E G, KLESH A T, et al. Periodic energy-optimal path planning for solar-powered aircraft[C]∥ AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009: 6016. |
24 | SPANGELO S C, GILBERT E G. Power optimization of solar-powered aircraft with specified closed ground tracks[J]. Journal of Aircraft, 2012, 50(1): 232-238. |
25 | HUANG Y, CHEN J, WANG H,et al. A method of 3D path planning for solar-powered UAV with fixed target and solar tracking[J]. Aerospace Science and Technology, 2019, 92: 831-838. |
26 | SACHS G, LENZ J, HOLZAPFEL F. Unlimited endurance performance of solar UAVs with minimal or zero electrical energy storage[C]∥ AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009: 6013. |
27 | SACHS G, LENZ J, HOLZAPFEL F. Periodic optimal control for solar aircraft with unlimited endurance capability[C]∥ AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2008: 6875. |
28 | GAO X Z, HOU Z X, GUO Z, et al. Joint optimization of battery mass and flight trajectory for high-altitude solar-powered aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(13): 2439-2451. |
29 | GAO X Z, HOU Z X, GUO Z, et al. Energy management strategy for solar-powered high-altitude long-endurance aircraft[J]. Energy Conversion and Management, 2013, 70: 20-30. |
30 | SILVA P, BAN M, KRANJC N, et al. Harvesting high altitude wind energy for power production: The concept based on Magnus’ effect[J]. Applied Energy, 2013, 101: 151-160. |
31 | SACHS G, TRAUGOTT J, NESTEROVA A P, et al. Flying at no mechanical energy cost: Disclosing the secret of wandering albatrosses[J]. PLoS One, 2012, 7(9): e41449. |
32 | MANLEY W R. The soaring of birds[J]. Nature, 1883, 28(713): 198. |
33 | AKOS Z, NAGY M, LEVEN S, et al. Thermal soaring flight of birds and unmanned aerial vehicles[J]. Bioinspiration & Biomimetics, 2010, 5(4): 045003. |
34 | Richardson P L. How do albatrosses fly around the world without flapping their wings?[J]. Progress in Oceanography, 2011, 88(1-4): 46-58. |
35 | WALKDEN S L. Experimental study of the “soaring” of albatrosses[J]. Nature, 1925, 116(2908): 132-134. |
36 | WILSON J A. Sweeping flight and soaring by albatrosses[J]. Nature, 1975, 257(5524): 307-308. |
37 | JONES D. Forever airborne[J]. Nature, 1994, 372(6502): 136. |
38 | LENTINK D, MÜLLER U K, STAMHUIS E J, et al. How swifts control their glide performance with morphing wings[J]. Nature, 2007, 446(7139): 1082-1085. |
39 | LANGELAAN J W, ROY N. Engineering. Enabling new missions for robotic aircraft[J]. Science, 2009, 326(5960): 1642-1644. |
40 | KAHVECI N E, IOANNOU P A, MIRMIRANI M D. Adaptive LQ control with anti-windup augmentation to optimize UAV performance in autonomous soaring applications[J]. IEEE Transactions on Control Systems Technology, 2008, 16(4): 691-707. |
41 | LAWRANCE N R J, SUKKARIEH S. Autonomous exploration of a wind field with a gliding aircraft[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3): 719-733. |
42 | SACHS G P. Dynamic soaring at 600 mph[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 0107. |
43 | KOESSLER J H. Dynamic soaring kinetic energy reference frames[J]. Journal of Aircraft, 2018, 56(1): 22-29. |
44 | ZHAO Y M, DUTTA A, TSIOTRAS P, et al. Optimal aircraft trajectories for wind energy extraction[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(2): 488-496. |
45 | GAVRILOVIC N, BENARD E, PASTOR P, et al. Performance improvement of small unmanned aerial vehicles through gust energy harvesting[J]. Journal of Aircraft, 2017, 55(2): 741-754. |
46 | BENCATEL R, KABAMBA P, GIRARD A. Perpetual dynamic soaring in linear wind shear[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(5): 1712-1716. |
47 | GONZÁLEZ-ARRIBAS D, SOLER M, SANJURJO-RIVO M. Robust aircraft trajectory planning under wind uncertainty using optimal control[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(3): 673-688. |
48 | TURKOGLU K. Real-time first-order guidance strategies for trajectory optimization through wind energy utilization[J]. Journal of Aircraft, 2017, 54(6): 2140-2147. |
49 | NEKOUI M, KHAGHANI J, NASIRI R, et al. Natural dynamics exploitation of dynamic soaring: Towards bio-inspired and energy efficient flying locomotion[C]∥ 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2019: 8171-8176. |
50 | SALAZAR L R, COBANO J A, OLLERO A. UAS soaring trajectories considering the atmospheric boundary layer for oceanic long duration missions[C]∥ MTS/IEEE OES OCEANS conference. Piscataway: IEEE Press, 2017 |
51 | MIR I, EISA S A, MAQSOOD A. Review of dynamic soaring: Technical aspects, nonlinear modeling perspectives and future directions[J]. Nonlinear Dynamics, 2018, 94(4): 3117-3144. |
52 | MIR I, TAHA H, EISA S A, et al. A controllability perspective of dynamic soaring[J]. Nonlinear Dynamics, 2018, 94(4): 2347-2362. |
53 | GAO X Z, XI H ZH, ZHENG G, et al. The influence of wind shear to the performance of high-altitude solar-powered aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(9): 1562-1573. |
54 | GAO X Z, et al. Reviews of methods to extract and store energy for solar-powered aircraft[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 96-108. |
55 | GAO X Z, HOU Z X, GUO Z, et al. Analysis and design of guidance-strategy for dynamic soaring with UAVs[J]. Control Engineering Practice, 2014, 32: 218-226. |
56 | REDDY G, WONG-NG J, CELANI A, et al. Glider soaring via reinforcement learning in the field[J]. Nature, 2018, 562(7726): 236-239. |
57 | 邓小龙, 杨希祥, 麻震宇, 等. 基于风场环境利用的平流层浮空器区域驻留关键问题研究进展[J]. 航空学报, 2019, 40(8): 022941. |
DENG X L, YANG X X, MA Z Y, et al. Review of key technologies for station-keeping of stratospheric aerostats based on wind field utilization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 022941 (in Chinese). | |
58 | 龙远, 邓小龙, 杨希祥, 等. 基于PSO-BP神经网络的平流层风场短期快速预测[J]. 北京航空航天大学学报, 2022, 48(10): 1970-1978. |
LONG Y, DENG X L, YANG X X, et al. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1970-1978 (in Chinese). | |
59 | NOBAHARI H, SHARIFI A. Multiple model extended continuous ant colony filter applied to real-time wind estimation in a fixed-wing UAV[J]. Engineering Applications of Artificial Intelligence, 2020, 92: 103629. |
60 | WANG X, YANG Y, WANG D,et al. Mission-oriented cooperative 3D path planning for modular solar-powered aircraft with energy optimization[J]. Chinese Journal of Aeronautics, 2022, 35(1): 98-109. |
61 | 侯中喜. 太阳能飞机: 高空长航时飞行关键问题[M]. 北京: 科学出版社, 2021. |
HOU Z X, GAO X Z, GUO Z, et al. Solar-powered aircraft--the crucial problem about the high-altitude long-endurance flight[M]. Beijing: Science Press, 2021. | |
62 | GAO X Z, HOU Z X, GUO Z, et al. The equivalence of gravitational potential and rechargeable battery for high-altitude long-endurance solar-powered aircraft on energy storage[J]. Energy Conversion and Management, 2013, 76: 986-995. |
63 | MARDANPOUR P, HODGES D H. Passive morphing of flying wing aircraft: Z-shaped configuration[J]. Journal of Fluids and Structures, 2014, 44: 17-30. |
64 | ABBE G, SMITH H. Technological development trends in solar-powered aircraft systems[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 770-783. |
65 | GRENESTEDT J L, SPLETZER J R. Towards perpetual flight of a gliding unmanned aerial vehicle in the jet stream[C]∥ 49th IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2011: 6343-6349. |
66 | LANGELAAN J W. Gust energy extraction for mini and micro uninhabited aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 464-473. |
67 | SUKUMAR P P, SELIG M S. Dynamic soaring of sailplanes over open fields[J]. Journal of Aircraft, 2013, 50(5): 1420-1430. |
68 | LIU D N, HOU Z X, GUO Z, et al. Optimal patterns of dynamic soaring with a small unmanned aerial vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(9): 1593-1608. |
69 | LIU D N, HOU Z X, GAO X Z. Flight modeling and simulation for dynamic soaring with small unmanned air vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(4): 589-605. |
70 | SACHS G P, LENZ J, HOLZAPFEL F. Dynamic soaring of albatrosses over land[C]∥ AIAA Atmospheric Flight Mechanics (AFM) Conference. Reston: AIAA, 2013: 4842. |
71 | WANG S, MA D, YANG M, et al. Flight strategy optimization for high-altitude long-endurance solar-powered aircraft based on Gauss pseudo-spectral method[J]. Chinese Journal of Aeronautics, 2019, 32(10): 2286-2298. |
72 | ANDREYCHUK A, YAKOVLEV K, SURYNEK P, et al. Multi-agent pathfinding with continuous time[J]. Artificial Intelligence, 2022, 305: 103662. |
73 | BINGJIE Z, ZHONGXI H, YAFEI L, et al. The direction zone of engineless uavs in dynamic soaring[J]. CMES: Computer Modeling in Engineering & Sciences, 2015, 105(6):467-490. |
74 | FU C, DING F, LI Y, et al. Learning dynamic regression with automatic distractor repression for real-time UAV tracking[J]. Engineering Applications of Artificial Intelligence, 2021, 98: 104116. |
75 | FUJIMOTO S, VAN HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[DB/OL]. arXiv preprint: 1802.09477, 2018. |
76 | GALÁN-JIMÉNEZ J, MOGUEL E, GARCÍA-ALONSO J, et al. Energy-efficient and solar powered mission planning of UAV swarms to reduce the coverage gap in rural areas: The 3D case[J]. Ad Hoc Networks, 2021, 118: 102517. |
77 | MAO Q, ZHANG L, HU F, et al. Deep Learning (DL)-based adaptive transport layer control in UAV Swarm Networks[J]. Computer Networks, 2021, 201: 108511. |
78 | SHEN B J, CHEEMA M A, HARABOR D D, et al. Fast optimal and bounded suboptimal Euclidean pathfinding[J]. Artificial Intelligence, 2022, 302: 103624. |
79 | ZHEN Z, CHEN Y, WEN L, et al. An intelligent cooperative mission planning scheme of UAV swarm in uncertain dynamic environment[J]. Aerospace Science and Technology, 2020, 100: 105826. |
80 | SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676): 354-359. |
81 | 高显忠. 基于重力势与风梯度的太阳能飞行器HALE问题研究[D]. 长沙: 国防科学技术大学, 2014. |
GAO X Z. Research on high-altitude long-endurance flight of solar-powered aircraft based on gravitational potential and wind shear[D]. Changsha: National University of Defense Technology, 2014 (in Chinese). | |
82 | 朱炳杰. 无人机风梯度动态滑翔机理与航迹优化研究[D]. 长沙: 国防科学技术大学, 2016. |
ZHU B J. Research on mechanism and trajectory optimization for unmanned aerial vehicles by dynamic soaring in gradient wind[D]. Changsha: National University of Defense Technology, 2016 (in Chinese). | |
83 | 单上求. 梯度风动态滑翔平衡态研究和控制器设计[D]. 长沙: 国防科技大学, 2017. |
SHAN S Q. Research on equilibrium of dynamic soaring in gradient wind and controller design[D]. Changsha: National University of Defense Technology, 2017 (in Chinese). | |
84 | 陈少飞. 无人机集群系统侦察监视任务规划方法[D]. 长沙: 国防科学技术大学, 2016. |
CHEN S F. Planning for reconnaissance and monitoring using UAV swarms[D]. Changsha: National University of Defense Technology, 2016 (in Chinese). | |
85 | 刘多能. 固定翼无人机动态滑翔机理与航迹优化研究[D]. 长沙: 国防科学技术大学, 2016. |
LIU D N. Research on mechanism and trajectory optimization for dynamic soaring with fixed-wing unmanned aerial vehicles[D]. Changsha: National University of Defense Technology, 2016 (in Chinese). |
[1] | Guangjia LI, Hongbo WANG, Kai ZHANG, Zhisheng YI. Lift enhancement and drag reduction technologies of solar powered unmanned aerial vehicles in near space: Review [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529644-529644. |
[2] | Xiaolong DENG, Xixiang YANG, Bingjie ZHU, Zhenyu MA, Zhongxi HOU. Simulation research and key technologies analysis of intelligent stratospheric aerostat Loon [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 127412-127412. |
[3] | Junhong LI, Xuhong JIN, Chunfeng LIU, Wenbo MIAO, Xiaoli CHENG. Microaerodynamic experiment and computation of near space high speed vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(6): 127072-127072. |
[4] | Yuhong CUI, Yizhe XU, Fanxi LYU, Fei ZHAO, Yujia ZHANG, Jiameng SUN, Guang ZUO. Influencing factors of weapon separation of hypersonic vehicles in near space [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 128539-128539. |
[5] | Zhiguang SHI, Yujie YANG, Zongyu ZUO. Multi-element coupled modeling and simulation for multi-capsule near-space airships [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 228451-228451. |
[6] | Jiameng SUN, Guang ZUO, Yizhe XU, Ruofan DU, Yuhong CUI. Numerical simulation of weapon delivery schemes for hypersonic vehicles in near space [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 127808-127808. |
[7] | LIN Peng, ZHUANG Fujian, QU Linfeng, XU Yangyang, SU Yadong. Technological development in hypersonic nozzle design, manufacture and validation: A review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526160-526160. |
[8] | BO Juntian, WANG Guohong, YU Hongbo, ZHANG Xiangyu. Algorithm for detecting and positioning hypersonic targets with wakes in near space [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 325255-325255. |
[9] | BO Juntian, WANG Guohong, YU Hongbo, ZHANG Xiangyu. Track-before-detection algorithm for multiple hypersonic targets in near space [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 325299-325299. |
[10] | CAO Xianbin, YANG Peng. Prospects of channel modeling and dynamic deployment technologies of near space information network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527332-527332. |
[11] | ZHOU Cong, YAN Xiaodong, TANG Shuo, LYU Shi. Midcourse guidance for endo-atmospheric interception based on model predictive static programming [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(11): 524912-524912. |
[12] | WANG Yuqi, NING Guodong, WANG Xiaofeng, HAO Mingrui, WANG Jianghua. Maneuver penetration strategy of near space vehicle based on differential game [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(S2): 724276-724276. |
[13] | CHEN Bing, ZHENG Yong, CHEN Zhanglei, ZHANG Houtian, LIU Xinjiang. A review of celestial navigation system on near space hypersonic vehicle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(8): 623686-623686. |
[14] | ZHU Lihong, SUN Guorui, HU Wentao, LI Chuan, FU Zengying, YU Zhihang, LIU Zhengxin. Key technology and development trend of energy system in solar powered unmanned aerial vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 623503-623503. |
[15] | ZHOU Cong, YAN Xiaodong, TANG Shuo. Explicit guidance law with varying gain and circular prediction for mid-course interception [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(10): 323122-323122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341