[1] ZHANG X Y, DONG P, DU X J, et al. Space-ground integrated information network enabled Internet of vehicles:Architecture and key mechanisms[J]. IEEE Communications Standards Magazine, 2020, 4(4):11-17. [2] CAO X B, YANG P, ALZENAD M, et al. Airborne communication networks:A survey[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9):1907-1926. [3] 林英撑. 民用航空自组织网络路由协议研究[D]. 重庆:重庆大学, 2014:11-16. LIN Y C. Research on routing protocol for civil aeronautical ad hoc network[D]. Chongqing:Chongqing University, 2014:11-16 (in Chinese). [4] 王俊杰, 李福昌, 张琳, 等. 民用航空互联网通信发展趋势及网络架构分析[J]. 邮电设计技术, 2021(12):28-31. WANG J J, LI F C, ZHANG L, et al. Analysis on development trend and network architecture of civil aviation communication[J]. Designing Techniques of Posts and Telecommunications, 2021(12):28-31 (in Chinese). [5] ZAFAR W, KHAN B M. Flying ad-hoc networks:Technological and social implications[J]. IEEE Technology and Society Magazine, 2016, 35(2):67-74. [6] OUBBATI O S, LAKAS A, ZHOU F, et al. A survey on position-based routing protocols for Flying Ad hoc Networks (FANETs)[J]. Vehicular Communications, 2017, 10:29-56. [7] HOSSEIN MOTLAGH N, TALEB T, AROUK O. Low-altitude unmanned aerial vehicles-based Internet of Things services:Comprehensive survey and future perspectives[J]. IEEE Internet of Things Journal, 2016, 3(6):899-922. [8] SEKANDER S, TABASSUM H, HOSSAIN E. Multi-tier drone architecture for 5G/B5G cellular networks:Challenges, trends, and prospects[J]. IEEE Communications Magazine, 2018, 56(3):96-103. [9] HAYAT S, YANMAZ E, MUZAFFAR R. Survey on unmanned aerial vehicle networks for civil applications:A communications viewpoint[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4):2624-2661. [10] KHUWAJA A A, CHEN Y F, ZHAO N, et al. A survey of channel modeling for UAV communications[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4):2804-2821. [11] KHAWAJA W, GUVENC I, MATOLAK D W, et al. A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3):2361-2391. [12] YAN C X, FU L G, ZHANG J K, et al. A comprehensive survey on UAV communication channel modeling[J]. IEEE Access, 2019, 7:107769-107792. [13] BEKMEZCI I., SAHINGOZ O K, TEMEL Ş. Flying ad-hoc networks (FANETs):A survey[J]. Ad Hoc Networks, 2013, 11(3):1254-1270. [14] KARAPANTAZIS S, PAVLIDOU F. Broadband communications via high-altitude platforms:A survey[J]. IEEE Communications Surveys & Tutorials, 2005, 7(1):2-31. [15] GUPTA L, JAIN R, VASZKUN G. Survey of important issues in UAV communication networks[J]. IEEE Communications Surveys & Tutorials, 2016, 18(2):1123-1152. [16] KARABULUT KURT G, KHOSHKHOLGH M G, ALFATTANI S, et al. A vision and framework for the high altitude platform station (HAPS) networks of the future[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2):729-779. [17] SAHINGOZ O K. Networking models in flying ad-hoc networks (FANETs):Concepts and challenges[J]. Journal of Intelligent & Robotic Systems, 2014, 74(1):513-527. [18] MATOLAK D W, SUN R Y. Unmanned aircraft systems:Air-ground channel characterization for future applications[J]. IEEE Vehicular Technology Magazine, 2015, 10(2):79-85. [19] ZENG Y, ZHANG R, LIM T J. Wireless communications with unmanned aerial vehicles:Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5):36-42. [20] GRACE D, MOHORCIC M. Broadband communications via high-altitude platforms[M]. Chichester:Wiley, 2011. [21] LIU J Y, ZHANG H W, SHENG M, et al. High altitude air-to-ground channel modeling for fixed-wing UAV mounted aerial base stations[J]. IEEE Wireless Communications Letters, 2021, 10(2):330-334. [22] LIAN Z X, JIANG L G, HE C, et al. A non-stationary 3-D wideband GBSM for HAP-MIMO communication systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2):1128-1139. [23] LIN Z, LIN M, HUANG Y M, et al. Robust multi-objective beamforming for integrated satellite and high altitude platform network with imperfect channel state information[J]. IEEE Transactions on Signal Processing, 2019, 67(24):6384-6396. [24] JI P P, JIANG L G, HE C, et al. Energy-efficient beamforming for beamspace HAP-NOMA systems[J]. IEEE Communications Letters, 2021, 25(5):1678-1681. [25] AHMADINEJAD H, FALAHATI A. Forming a two-tier heterogeneous air-network via combination of high and low altitude platforms[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2):1989-2001. [26] KE M L, GAO Z, HUANG Y, et al. An edge computing paradigm for massive IoT connectivity over high-altitude platform networks[J]. IEEE Wireless Communications, 2021, 28(5):102-109. [27] SWAMINATHAN R, SHARMA S, VISHWAKARMA N, et al. HAPS-based relaying for integrated space-air-ground networks with hybrid FSO/RF communication:A performance analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3):1581-1599. [28] 3GPP. Study on New Radio (NR) to support non-terrestrial networks (Release 15):3GPP TR 38.811[R]. The 3rd Generation Partnership Project, 2020. [29] ITU-R. Propagation data and prediction methods required for the design of terrestrial line-of-sight systems:ITU-R P.530-18[R]. The ITU Radiocommunication, 2021. [30] OGBE D, LOVE D J, REBHOLZ M, et al. Efficient channel estimation for aerial wireless communications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6):2774-2785. [31] WANG X R, LI W L, CHEN V C. Hand gesture recognition using radial and transversal dual micro-motion features[J/OL]. IEEE Transactions on Aerospace and Electronic Systems(2022-06-02)[2022-06-06]. https://ieeexplore.ieee.org/document/9786733. [32] DAI J S, LIU A, LAU V K N. FDD massive MIMO channel estimation with arbitrary 2D-array geometry[J]. IEEE Transactions on Signal Processing, 2018, 66(10):2584-2599. [33] LIAN L X, LIU A, LAU V K N. Exploiting dynamic sparsity for downlink FDD-massive MIMO channel tracking[J]. IEEE Transactions on Signal Processing, 2019, 67(8):2007-2021. [34] Recommendation ITU-R. Specific attenuation model for rain for use in prediction methods:ITU-R P.838[R]. The ITU Radiocommunication, 2005. [35] Recommendation ITU-R. Reference standard atmospheres:ITU-R P 835-5-2012[R]. The ITU Radiocommunication, 2017. [36] Recommendation ITU-R. Water vapour:Surface density and total columnar content:ITU-R P.836[R]. The ITU Radiocommunication, 2017. [37] Recommendation ITU-R. Characteristics of precipitation for propagation modelling:ITU-R P.837[R]. The ITU Radiocommunication, 2017. [38] YE J, DANG S P, SHIHADA B, et al. Space-air-ground integrated networks:Outage performance analysis[J]. IEEE Transactions on Wireless Communications, 2020, 19(12):7897-7912. [39] YANG P, CAO X B, YIN C, et al. Proactive drone-cell deployment:Overload relief for a cellular network under flash crowd traffic[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10):2877-2892. [40] TANG X W, HUANG X L, HU F. QoE-driven UAV-enabled pseudo-analog wireless video broadcast:A joint optimization of power and trajectory[J]. IEEE Transactions on Multimedia, 2021, 23:2398-2412. [41] ZHAN C, HUANG R J. Energy efficient adaptive video streaming with rotary-wing UAV[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7):8040-8044. [42] 3GPP. Study on channel model for frequency spectrum above 6 GHz, V15.0.0:TR 38.900[R]. The 3rd Generation Partnership Project, 2018. [43] YANG P, CAO X B, QUEK T Q S, et al. Networking of Internet of UAVs:Challenges and intelligent approaches[DB/OL]. ArXiv preprint:2111.07078, 2021. |