1 |
陈浮, 权晓波, 宋彦萍. 空气动力学基础[M]. 哈尔滨: 哈尔滨工业大学出版社, 2015.
|
|
CHEN F, QUAN X B, SONG Y P. Fundamentals of aerodynamics[M]. Harbin: Harbin Institute of Technology Press, 2015 (in Chinese).
|
2 |
高广宇, 刘冰, 黄伟, 等. 高超声速飞行器逆向射流减阻防热技术综述[J]. 战术导弹技术, 2021(4): 67-75, 135.
|
|
GAO G Y, LIU B, HUANG W, et al. Review of opposing jet drag reduction and thermal protection technology for hypersonic vehicle[J]. Tactical Missile Technology, 2021(4): 67-75, 135 (in Chinese).
|
3 |
ZHENG Y Y, AHMED N A. Thermal protection systems in spacecraft re-entry-a brief overview[J]. Journal of Heat and Mass Transfer, 2013,8(1):99-118.
|
4 |
ENGBLOM W A, GOLDSTEIN D B, LADOON D, et al. Fluid dynamics of hypersonic forward-facing cavity flow[J]. Journal of Spacecraft and Rockets, 1997, 34(4): 437-444.
|
5 |
SARAVANAN S, JAGADEESH G, REDDY K P J. Investigation of missile-shaped body with forward-facing cavity at Mach 8[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 577-591.
|
6 |
AHMED M Y M, QIN N. Recent advances in the aerothermodynamics of spiked hypersonic vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6): 425-449.
|
7 |
KNIGHT D. Survey of aerodynamic drag reduction at high speed by energy deposition[J]. Journal of Propulsion and Power, 2008, 24(6): 1153-1167.
|
8 |
FINLEY P J. The flow of a jet from a body opposing a supersonic free stream[J]. Journal of Fluid Mechanics, 1966, 26(2): 337-368.
|
9 |
邓帆, 谢峰, 黄伟, 等. 逆向喷流技术在高超声速飞行器上的应用[J]. 空气动力学学报, 2017, 35(4): 485-495.
|
|
DENG F, XIE F, HUANG W, et al. Applications of counterflowing jet technology in hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2017, 35(4): 485-495 (in Chinese).
|
10 |
董昊, 张旭东, 刘是成, 等. 高超声速逆向喷流数值模拟和风洞试验[J]. 空气动力学学报, 2022, 40(4): 101-109.
|
|
DONG H, ZHANG X D, LIU S C, et al. Numerical and experimental study on opposing jet in hypersonic flow[J]. Acta Aerodynamica Sinica, 2022, 40(4): 101-109 (in Chinese).
|
11 |
陆海波, 田世英. 迎风凹腔: 一种有效的高超声速飞行器热防护选择[J]. 飞航导弹, 2015(6): 11-15, 26.
|
|
LU H B, TIAN S Y. Windward cavity-an effective thermal protection option for hypersonic vehicle[J]. Aerodynamic Missile Journal, 2015(6): 11-15, 26 (in Chinese).
|
12 |
LU H B, LIU W Q. Research on thermal protection mechanism of forward-facing cavity and opposing jet combinatorial thermal protection system[J]. Heat and Mass Transfer, 2014, 50(4): 449-456.
|
13 |
SUN X W, GUO Z Y, HUANG W, et al. Drag and heat reduction mechanism induced by a combinational novel cavity and counterflowing jet concept in hypersonic flows[J]. Acta Astronautica, 2016, 126: 109-119.
|
14 |
ZHANG R R, DONG M Z, HUANG W, et al. Drag and heat flux reduction mechanism induced by the combinational forward-facing cavity and pulsed counterflowing jet configuration in supersonic flows[J]. Acta Astronautica, 2019, 160: 62-75.
|
15 |
HUANG W, CHEN Z, YAN L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review[J]. Progress in Aerospace Sciences, 2019, 105: 31-39.
|
16 |
ZHANG J, MA H D, QIN Y M. Experimental investigation on flow characteristic of combination of forward-facing jet and spike[C]∥21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
|
17 |
周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027.
|
|
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027 (in Chinese).
|
18 |
CARUANA D, BARRICAU P, HARDY P. The “plasma synthetic jet” actuator. aero-thermodynamic characterization and first flow control applications[C]∥47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
|
19 |
ZHANG Z B, ZHANG X N, WU Y, et al. Experimental research on the shock wave control based on one power supply driven plasma synthetic jet actuator array[J]. Acta Astronautica, 2020, 171: 359-368.
|
20 |
NARAYANASWAMY V, RAJA L L, CLEMENS N T. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator[J]. Physics of Fluids, 2012, 24(7): 076101.
|
21 |
XIE W, LUO Z B, ZHOU Y, et al. Experimental study on ramp shock wave control in Ma3 supersonic flow using two-electrode SparkJet actuator[J]. Processes, 2020, 8(12): 1679.
|
22 |
WANG H Y, LI J, JIN D, et al. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation[J]. Acta Astronautica, 2018, 142: 45-56.
|
23 |
陈加政, 胡国暾, 樊国超, 等. 等离子体合成射流对钝头激波的控制与减阻[J]. 航空学报, 2021, 42(7): 124773.
|
|
CHEN J Z, HU G T, FAN G C, et al. Bow shock wave control and drag reduction by plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124773 (in Chinese).
|
24 |
XIE W, LUO Z B, HOU L, et al. Characterization of plasma synthetic jet actuator with Laval-shaped exit and application to drag reduction in supersonic flow[J]. Physics of Fluids, 2021, 33(9): 096104.
|
25 |
BELINGER A, HARDY P, GHERARDI N, et al. Influence of the spark discharge size on a plasma synthetic jet actuator[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2334-2335.
|
26 |
JI C, LIU B, HUANG W, et al. Investigation on the drag reduction and thermal protection properties of the porous opposing jet in the supersonic flow: A parametric study with constant mass flow rate[J]. Aerospace Science and Technology, 2021, 118: 107064.
|