[1] LIN W F, CHEN A W, TINOCO E N. 3D transonic nacelle and winglet design:AIAA-1990-3064[R]. Reston:AIAA,1990. [2] NAIK D A, KRIST S E, CAMPBELL R L, et al. Inverse design of nacelles using multi-block Navier Stokes codes:AIAA-1995-1820[R]. Reston:AIAA, 1995. [3] WILHELM R. Inverse design method for designing isolated and wing-mounted engine[J]. Journal of aircraft, 2002, 39(6):989-995. [4] 沈克扬. 涡扇发动机短舱的气动设计方法[J]. 民用飞机设计与研究, 1992(4):11-19. SHEN K Y. Aerodynamic design method of turbofan engine nacelle[J]. Civil Aircraft Design & Research, 1992(4):11-19(in Chinese). [5] 周洪升, 钟易成. 民机翼吊式短舱参数化造型设计[J]. 机械制造与自动化, 2010, 39(4):3-6, 16. ZHOU H S, ZHONG Y C. Parameterized model design of under-the-wing nacelle for civil aircraft[J]. Machine Building & Automation, 2010, 39(4):3-6, 16(in Chinese). [6] 刘凯礼, 姬昌睿, 谭兆光, 等. 大涵道比涡扇发动机TPS短舱低速气动特性分析[J]. 推进技术, 2015, 36(2):186-193. LIU K L, JI C R, TAN Z G, et al. Numerical study on low speed aerodynamic performance of large bypass ratio engine TPS nacelle[J]. Journal of Propulsion Technology, 2015, 36(2):186-193(in Chinese). [7] 刘凯礼, 司江涛, 赵克良, 等. 大涵道比发动机通流短舱阻力特性修正数值研究[J]. 推进技术, 2019, 40(5):978-985. LIU K L, SI J T, ZHAO K L, et al. Numerical study of large bypass ratio engine through flow nacelle on drag characteristic correction[J]. Journal of Propulsion Technology, 2019, 40(5):978-985(in Chinese). [8] 刘凯礼, 孙一峰, 钟园, 等. 民用飞机进气道的侧风畸变研究[J]. 航空动力学报, 2015, 30(2):289-296. LIU K L, SUN Y F, ZHONG Y, et al. Research on inlet distortion under crosswind for civil aircraft[J]. Journal of Aerospace Power, 2015, 30(2):289-296(in Chinese). [9] 王修方. 涡扇发动机动力短舱的设计[J]. 民用飞机设计与研究, 1998(1):30-36. WANG X F. Design of turbofan engine power nacelle[J]. Civil Aircraft Design & Resarch, 1998(1):30-36(in Chinese). [10] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4):122429. ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4):122429(in Chinese). [11] 乔志德. 自然层流超临界翼型的设计研究[J]. 流体力学实验与测量, 1998, 12(4):23-30. QIAO Z D. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(4):23-30(in Chinese). [12] 李权, 段卓毅, 张彦军, 等. 民用飞机自然层流机翼研究进展[J]. 航空工程进展, 2013, 4(4):399-406. LI Q, DUAN Z Y, ZHANG Y J, et al. Progress in research on natural laminar wing for civil aircraft[J]. Advances in Aeronautical Science and Engineering, 2013, 4(4):399-406(in Chinese). [13] HOMES B J, OBARA C J, YIP L P. Natural laminar flow experiments on modern airplane surfaces:NASA-TP-2256[R]. Washington, D.C.:NASA, 1984. [14] RIEDEL H, HORSTMANN K H, RONZHEIMER A, et al. Aerodynamic design of a natural laminar flow nacelle and the design validation by flight testing[J]. Aerospace Science and Technology, 1998, 2(1):1-12. [15] ZHONG Y J, LI S Y. A 3D shape design and optimization method for natural laminar flow nacelle:GT-2017-6437[R]. New York:ASME, 2017. [16] 曹凡, 胡骁, 张美芳, 等. 高雷诺数下跨声速自然层流短舱优化设计[J]. 航空动力学报, 2021, 36(8):1729-1739. CAO F, HU X, ZHANG M F, et al. Transonic natural laminar flow nacelle optimization design at high Reynolds number[J]. Journal of Aerospace Power, 2021, 36(8):1729-1739(in Chinese). [17] 何小龙, 白俊强, 夏露, 等. 基于EFFD方法的自然层流短舱优化设计[J]. 航空动力学报, 2014, 29(10):2311-2320. HE X L, BAI J Q, XIA L, et al. Natural laminar flow nacelle optimization design based on EFFD method[J]. Journal of Aerospace Power, 2014, 29(10):2311-2320(in Chinese). [18] 陈俊, 章欣涛, 冯丽娟. 民用航空涡轮发动机短舱高速风洞试验[J]. 航空动力学报, 2019, 34(7):1416-1424. CHEN J, ZHANG X T, FENG L J. High speed wind tunnel test of civil aviation turbine engine nacelle[J]. Journal of Aerospace Power, 2019, 34(7):1416-1424(in Chinese). [19] 章欣涛, 冯丽娟, 王维, 等. 民用航空涡扇发动机短舱外部阻力试验方法研究[J]. 推进技术, 2021, 42(2):241-248. ZHANG X T, FENG L J, WANG W, et al. Test method of external drag of civil aviation turbofan engine nacelle[J]. Journal of Propulsion Technology, 2021, 42(2):241-248(in Chinese). [20] 卫永斌, 张堃元. 三维侧压式高超声速进气道阻力特性分析[J]. 航空动力学报, 2009, 24(7):1594-1600. WEI Y B, ZHANG K Y. Analysis of drags trait in three-dimensional sidewall hypersonic inlet[J]. Journal of Aerospace Power, 2009, 24(7):1594-1600(in Chinese). [21] RE R J. An investigation of several NACA 1 series axisymmetric inlets at Mach numbers from 0.4 to 1.29:TM-X-2917[R]. Washington, D.C.:NASA, 1974. [22] DENNER B, MCCALLUM B, TRUAX P. CFD precicton of inlet spill drag increments:AIAA-1998-3566[R]. Reston:AIAA, 1998. [23] SEDDON J, GOLDSMITH E. Intake aerodynamics[M]. 2nd ed. Reston:AIAA, 1999. |