[1] BRAUN R D, MANNING R M. Mars exploration entry, descent, and landing challenges[J]. Journal of Spacecraft and Rockets, 2007, 44(2):310-323. [2] ROBERT M M, MARK A A. Landing on Mars[C]//AIAA Space Conference.Reston:AIAA,2005. [3] STELTZNER A, KIPP D, CHEN A, et al. Mars science laboratory entry, descent, and landing system[C]//IEEE Aerospace Conference.Piscataway:IEEE Press, 2006. [4] 马广富,龚有敏,郭延宁,等. 载人火星探测进展及其EDL过程GNC关键技术[J]. 航空学报,2020, 41(7):323651. MA G F, GONG Y M, GUO Y N, et al. Research progress and EDL GNC key technologies of human mars mission[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7):323651(in Chinese). [5] 黄飞, 吕俊明, 程晓丽, 等. 火星进入器高空稀薄气动特性[J]. 航空学报, 2017, 38(5):120457. HUANG F, LYU J M, CHENG X L, et al. Aerodynam ics of Mars entry vehicles under hypersonic rarefied condition[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5):120457(in Chinese). [6] HOLDEN M, WADHAMS T, SMOLINSKI G, et al. Experimental and numerical studies on hypersonic vehicle performance in LENS shock and expansion tunnels[C]//AIAA Aerospace Sciences Meeting & Exhibit.Reston:AIAA, 2006. [7] MACLEAN M, HOLDEN M. Catalytic effects on heat transfer measurements for aerothermal studies with CO2[C]//AIAA Aerospace Sciences Meeting & Exhibit.Reston:AIAA, 2013. [8] MACLEAN M, HOLDEN M. Numerical assessment of data in catalytic and transitional flows for martian entry[C]//9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference.Reston:AIAA, 2006. [9] JIANG Z L, YU H R. Theories and technologies for duplicating hypersonic flight conditions for ground testing[J]. National Science Review, 2017(3):12-18. [10] JIANG Z L, YU H R. Experiments and development of the long-test-duration hypervelocity detonation-driven shock tunnel (LHDst)[C]//29th International Symposium on Shock Waves 1. Springer International Publishing, 2015. [11] YU H R, ESSER B, LENARTZ M, et al. Gaseous detonation driver for a shock tunnel[J]. Shock Waves, 1992, 2(4):245-254. [12] 李进平. 爆轰驱动高焓激波风洞关键问题研究[D]. 北京:中国科学院力学研究所, 2007. LI J P. Investigation into essential problems of detona tion-driven high enthalpy shock tunnels[D]. Beijing:Institute of Mechanics, Chinese Academy of Sciences,2007(in Chinese). [13] 姜宗林. 高超声速高焓风洞试验技术研究进展[J]. 空气动力学学报, 2019, 37(3):347-355. JIANG Z L. Progress on experimental techniques of hypersonic and high-enthalpy wind tunnels[J]. Acta Aerodynamica Sinica, 2019, 37(3):347-355(in Chinese). [14] 李进平, 冯珩, 姜宗林, 等. 爆轰驱动激波管缝合激波马赫数计算[J]. 空气动力学学报, 2008, 26(3):291-295. LI J P, FENG H, JIANG Z L, et al. Numerical computation on the tailored shock Mach numbers for a hydrogen-oxygen detonation shock tube[J]. Acta Aerodynamica Sinica, 2008, 26(3):291-295(in Chinese). [15] 姜宗林, 李进平, 胡宗民,等. 高超声速飞行复现风洞理论与方法[J]. 力学学报, 2018, 50(6):1283-1291. JIANG Z L, LI J P, HU Z M, et al. Shock tunnel theory and methods for duplicating hypersonic flight conditions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6):1283-1291(in Chinese). [16] 姜宗林, 李进平, 赵伟,等. 长试验时间爆轰驱动激波风洞技术研究[J]. 力学学报, 2012(5):20-27. JIANG Z L, LI J P, ZHAO W, et al. Investigating into techniques for extending the test-duration of detonation-driven shock tunnels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012(5):20-27(in Chinese). [17] 俞鸿儒, 林建民, 李仲发,等. 扩张激波管流动波图观察[J]. 空气动力学学报, 1984(3):90-93. YU H R, LIN J M, LI Z F, et al. Observation of wave diagrams for shock tube with the divergent nozzle at diaphragm section[J]. Acta Aerodynamica Sinica, 1984(3):90-93(in Chinese). [18] LADERMAN A J. Shock-tube performance with area divergence at the diaphragm section[J]. AIAA Journal, 1967, 5(10):1904-1906. [19] ALPHER R A, WHITE D R. Flow in shock tubes with area change at the diaphragm section[J]. Journal of Fluid Mechanics Digital Archive, 1958, 3(5):457-470. [20] 陈强. 激波管流动的理论和实验技术[M]. 合肥:中国科技大学出版社, 1979:208-212 CHEN Q. The theory and experimental technology of shock tube flow[M]. Hefei:University of Science and Technology of China Press, 1979:208-212(in Chinese). [21] HU Z M, JIANG Z L. Wave dynamic processes in cellular detonation reflection from wedges[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1):33-41. [22] JIANG Z L. On dispersion-controlled principles for non-oscillatory shock-capturing schemes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 20(1):1-15. |