[1] LUO M, HAH C, HAFEEZ H M. Four-axis trochoidal toolpath planning for rough milling of aero-engine blisks[J]. Chinese Journal of Aeronautics, 2019, 32(8):2009-2016. [2] KIM H C, LEE S H, YANG D Y. Toolpath planning algorithm for the ablation process using energy sources[J]. Computer-Aided Design, 2009, 41(1):59-64. [3] PATELOUP V, DUC E, RAY P. Corner optimization for pocket machining[J]. International Journal of Machine Tools and Manufacture, 2004, 44(12-13):1343-1353. [4] LIU C Q, LI Y G, JIANG X, et al. Five-axis flank milling tool path generation with curvature continuity and smooth cutting force for pockets[J]. Chinese Journal of Aeronautics, 2020, 33(2):730-739. [5] 鲍岩. 面向飞机蒙皮制造的薄板镜像铣削工艺基础[D]. 大连:大连理工大学, 2018:2-8. BAO Y. Foundation of mirror milling technology of sheet for aircraft skin manufacturing[D]. Dalian:Dalian University of Technology, 2018:2-8(in Chinese). [6] 蒋欣. 壁板零件镜像铣削刀轨生成方法[D]. 南京:南京航空航天大学, 2018:1-3. JIANG X. Toolpath generation method for mirror milling of panel parts[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:1-3(in Chinese). [7] KIM H C. Tool path generation and modification for constant cutting forces in direction parallel milling[J]. The International Journal of Advanced Manufacturing Technology, 2011, 52(9-12):937-947. [8] HATNA A, GRIEVE R, BROOMHEAD P. Automatic CNC milling of pockets:Geometric and technological issues[J]. Computer Integrated Manufacturing Systems, 1998, 11(4):309-330. [9] KIM B H, CHOI B K. Machining efficiency comparison direction-parallel tool path with contour-parallel tool path[J]. Computer-Aided Design, 2002, 34(2):89-95. [10] SUN Y W, XU J T, JIN C N, et al. Smooth tool path generation for 5-axis machining of triangular mesh surface with nonzero genus[J]. Computer-Aided Design, 2016, 79:60-74. [11] BAHLOUL E, BRIOUA M, REBIAI C. An efficient contour parallel tool path generation for arbitrary pocket shape without uncut regions[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(6):1157-1169. [12] ABDULLAH H, RAMLI R, WAHAB D A. Tool path length optimisation of contour parallel milling based on modified ant colony optimisation[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(1-4):1263-1276. [13] XU K, LI Y G, XIANG B F. Image processing-based contour parallel tool path optimization for arbitrary pocket shape[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5-8):1091-1105. [14] XU K, LI Y G. Digital image approach to tool path generation for surface machining[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(9-12):2547-2558. [15] CHOI B K, KIM B H. Die-cavity pocketing via cutting simulation[J]. Computer-Aided Design, 1997, 29(12):837-846. [16] LEE C S, PHAN T T, KIM D S. 2D curve offset algorithm for pockets with Islands using a vertex offset[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(2):127-135. [17] PARK S C, CHOI B K. Uncut free pocketing tool-paths generation using pair-wise offset algorithm[J]. Computer-Aided Design, 2001, 33(10):739-746. [18] BO Q. Recursive polygon offset computing for rapid prototyping applications based on Voronoi diagrams[J]. The International Journal of Advanced Manufacturing Technology, 2010, 49(9-12):1019-1028. [19] HELD M, LUKÁCS G, ANDOR L. Pocket machining based on contour-parallel tool paths generated by means of proximity maps[J]. Computer-Aided Design, 1994, 26(3):189-203. [20] PERSSON H. NC machining of arbitrarily shaped pockets[J]. Computer-Aided Design, 1978, 10(3):169-174. [21] HELD M. Voronoi diagrams and offset curves of curvilinear polygons[J]. Computer-Aided Design, 1998, 30(4):287-300. [22] HELD M. VRONI:An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments[J]. Computational Geometry, 2001, 18(2):95-123. [23] SAEED S E O, DE PENNINGTON A, DODSWORTH J R. Offsetting in geometric modelling[J]. Computer-Aided Design, 1988, 20(2):67-74. [24] MOLINA-CARMONA R, JIMENO A, RIZO-ALDEGUER R. Morphological offset computing for contour pocketing[J]. Journal of Manufacturing Science and Engineering, 2007, 129(2):400-406. [25] LIN Z W, FU J Z, SHEN H Y, et al. Global uncut regions removal for efficient contour-parallel milling[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(5-8):1241-1252. [26] ZHAO Z Y, WANG C Y, ZHOU H M, et al. Pocketing toolpath optimization for sharp corners[J]. Journal of Materials Processing Technology, 2007, 192-193:175-180. [27] PATELOUP V, DUC E, RAY P. Bspline approximation of circle arc and straight line for pocket machining[J]. Computer-Aided Design, 2010, 42(9):817-827. [28] 王家斌, 王炫润, 李劭晨, 等. 含孤岛型腔铣削加工的螺旋刀轨生成算法[J]. 航空学报, 2016, 37(5):1689-1695. WANG J B, WANG X R, LI S C, et al. Spiral tool path generation algorithm for milling pocket with island[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1689-1695(in Chinese). [29] 王玉国, 周来水, 安鲁陵, 等. 型腔铣削加工光滑螺旋刀轨生成算法[J]. 航空学报, 2008, 29(1):216-220. WANG Y G, ZHOU L S, AN L L, et al. Smooth spiral tool path generation for pocket milling[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):216-220(in Chinese). [30] BIETERMAN M B, SANDSTROM D R. A curvilinear tool-path method for pocket machining[J]. Journal of Manufacturing Science and Engineering, 2003, 125(4):709-715. [31] BLUM H, NAGEL R N. Shape description using weighted symmetric axis features[J]. Pattern Recognition, 1978, 10(3):167-180. [32] BA W L, CAO L X, LIU J. Research on 3D medial axis transform via the saddle point programming method[J]. Computer-Aided Design, 2012, 44(12):1161-1172. [33] ELBER G, COHEN E, DRAKE S. MATHSM:Medial axis transform toward high speed machining of pockets[J]. Computer-Aided Design, 2005, 37(2):241-250. [34] YAO Z Y. A novel cutter path planning approach to high speed machining[J]. Computer-Aided Design and Applications, 2006, 3(1-4):241-248. [35] YAO Z Y, JONEJA A. Path generation for high speed machining using spiral curves[J]. Computer-Aided Design and Applications, 2007, 4(1-4):191-198. [36] PATEL D D, LALWANI D I. Quantitative comparison of pocket geometry and pocket decomposition to obtain improved spiral tool path:a novel approach[J]. Journal of Manufacturing Science and Engineering, 2017, 139(3):031020. [37] HELD M, SPIELBERGER C. A smooth spiral tool path for high speed machining of 2D pockets[J]. Computer-Aided Design, 2009, 41(7):539-550. [38] HUANG N D, LYNN R, KURFESS T. Aggressive spiral toolpaths for pocket machining based on medial axis transformation[J]. Journal of Manufacturing Science and Engineering, 2017, 139(5):8. [39] HUANG N D, JIN Y Q, LU Y A, et al. Spiral toolpath generation method for pocket machining[J]. Computers & Industrial Engineering, 2020, 139:106142. [40] IVANOV D, KUZMIN E, BURTSEV S. An efficient integer-based skeletonization algorithm[J]. Computers & Graphics, 2000, 24(1):41-51. [41] SCHAEFER S, MCPHAIL T, WARREN J. Image deformation using moving least squares[J]. ACM Transactions on Graphics, 2006, 25(3):533-540. [42] XIANG B F, LI Y G, XU K, et al. Image morphology-based path generation for high-speed pocketing[J]. Journal of Manufacturing Science and Engineering, 2020, 142(4):1-23. |