[1] VASILIEV V V, BARYNIN V A, RASIN A F. Anisogrid lattice structures-survey of development and application[J]. Composite Structures, 2001, 54(2-3): 361-370. [2] GU M K, HE W, TANG K, et al. Research on the development plan of Chinese liquid launch vehicle structure system[J]. Astronautical Systems Engineering Technology, 2021, 5(2): 55-67 (in Chinese). 顾名坤, 何巍, 唐科, 等. 中国液体运载火箭结构系统发展规划研究[J]. 宇航总体技术, 2021, 5(2): 55-67. [3] HOU A, GRAMOLL K. Design and fabrication of CFRP interstage attach fitting for launch vehicles[J]. Journal of Aerospace Engineering, 1999, 12(3): 83-91. [4] WEGNER P M, GANLEY J M, HUYNRECHTS S M, et al. Advanced grid stiffened composite payload shroud for the OSP launch vehicle[C]//2000 IEEE Aerospace Conference. Piscataway: IEEE Press, 2000: 359-365. [5] KONG B, CHEN P H, CHEN Y. Post-buckling failure evaluation method of integrated composite stiffened panels under uniaxial compression[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 765-771 (in Chinese). 孔斌, 陈普会, 陈炎. 复合材料整体加筋板轴压后屈曲失效评估方法[J]. 复合材料学报, 2014, 31(3): 765-771. [6] MAN L T, YANG C.Optimal design of rectangular stiffened plate structure[J]. China Science and Technology Information, 2018(19): 45-48 (in Chinese). 满林涛, 杨婵. 矩形加筋板结构优化设计[J]. 中国科技信息, 2018(19): 45-48. [7] ORIFICI A C, THOMSON R S, DEGENHARDT R, et al. Degradation investigation in a postbuckling composite stiffened fuselage panel[J]. Composite Structures, 2008, 82(2): 217-224. [8] WANG Y, LI S, XU Q Y, et al. Optimization design and analysis of stiffened composite panels in post-buckling under shear[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1512-1525 (in Chinese). 王燕, 李书, 许秋怡, 等. 复合材料加筋板剪切后屈曲分析与优化设计[J]. 航空学报, 2016, 37(5): 1512-1525. [9] TRIPATHI M, DHAKAL R P, DASHTI F, et al. Low-cycle fatigue behaviour of reinforcing bars including the effect of inelastic buckling[J]. Construction and Building Materials, 2018, 190: 1226-1235. [10] LAHUERTA F, KOORN N, SMISSAERT D. Wind turbine blade trailing edge failure assessment with sub-component test on static and fatigue load conditions[J]. Composite Structures, 2018, 204: 755-766. [11] DÁVILA C G, BISAGNI C. Fatigue life and damage tolerance of postbuckled composite stiffened structures with initial delamination[J]. Composite Structures, 2017, 161: 73-84. [12] WILLIAMS P A, KIM H A, BUTLER R. Bimodal buckling ofoptimised truss-lattice shear panels[J]. AIAA Journal, 2008, 46(8): 1937-1943. [13] ALINIA M M. A study into optimization of stiffeners in plates subjected to shear loading[J]. Thin-Walled Structures, 2005, 43(5): 845-860. [14] WANG B, TIAN K, HAO P, et al. Hybrid analysis and optimization of hierarchical stiffened plates based on asymptotic homogenization method[J]. Composite Structures, 2015, 132: 136-147. [15] BAZ A M, RO J J. Vibration control of plates with active constrained-layer damping[C]//Smart Structures and Materials ’95. Proc SPIE 2445, Smart Structures and Materials 1995: Passive Damping, 1995, 2445: 393-409. [16] HUGHES W, MCNELIS A, HIMELBLAU H. Investigation of acoustic fields for the Cassini spacecraft-Reverberant versus launch environments[C]//5th AIAA/CEAS Aeroacoustics Conference and Exhibit. Reston: AIAA, 1999: 1193-1203. [17] OSMAN H, JOHNSON M, FULLER C, et al. Interior noise reduction of composite cylinders using distributed vibration absorbers[C]//7th AIAA/CEAS Aeroacoustics Conference and Exhibit.Reston: AIAA, 2001: 2230. [18] GRIFFIN S, GUSSY J, LANE S, et al. Innovative passive mechanisms for control of sound in a launch vehicle fairing[C]//41 st Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston: AIAA, 2000: 1436. [19] CAPRACE J D, BAIR F, RIGO P. Scantling multi-objective optimisation of a LNG carrier[J]. Marine Structures, 2010, 23(3): 288-302. [20] NIKBAKT S, KAMARIAN S, SHAKERI M. A review on optimization of composite structures Part I: Laminated composites[J]. Composite Structures, 2018, 195: 158-185. [21] XIE C H, WU Y, LIU Z S. Modeling and active vibration control of lattice grid beam with piezoelectric fiber composite using fractional order PDμ algorithm[J]. Composite Structures, 2018, 198: 126-134. [22] MEAD D J, PARTHAN S. Free wave propagation in two-dimensional periodic plates[J]. Journal of Sound and Vibration, 1979, 64(3): 325-348. [23] RUZZENE M, BAZ A. Control of wave propagation in periodic composite rods using shape memory inserts[J]. Journal of Vibration and Acoustics, 2000, 122(2): 151-159. [24] ZHOU C W, LAINÉ J P, ICHCHOU M N, et al. Multi-scale modelling for two-dimensional periodic structures using a combined mode/wave based approach[J]. Computers & Structures, 2015, 154: 145-162. [25] PENG H, PAI P F, DENG H G. Acoustic multi-stopband metamaterial plates design for broadband elastic wave absorption and vibration suppression[J]. International Journal of Mechanical Sciences, 2015, 103: 104-114. [26] CAI C X, WANG Z H, CHU Y Y, et al. The phononic band gaps of Bragg scattering and locally resonant pentamode metamaterials[J]. Journal of Physics D: Applied Physics, 2017, 50(41): 415105. [27] YU K P, CHEN T N, WANG X P. Band gaps in the low-frequency range based on the two-dimensional phononic crystal plates composed of rubber matrix with periodic steel stubs[J]. Physica B: Condensed Matter, 2013, 416: 12-16. [28] MACE B R, MANCONI E. Wave motion and dispersion phenomena:Veering, locking and strong coupling effects[J]. The Journal of the Acoustical Society of America, 2012, 131(2): 1015-1028. [29] CHEN S B, WANG G, SONG Y B. Low-frequency vibration isolation in sandwich plates by piezoelectric shunting arrays[J]. Smart Materials and Structures, 2016, 25(12): 125024. [30] WEN J H, CHEN S B, WANG G, et al. Directionality of wave propagation and attenuation in plates with resonant shunting arrays[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(1): 28-38. [31] LANGLEY R S, COTONI V. The direct field boundary impedance of two-dimensional periodic structures with application to high frequency vibration prediction[J]. The Journal of the Acoustical Society of America, 2010, 127(4): 2118-2128. [32] VIGRAN T E. Sound transmission in multilayered structures-Introducing finite structural connections in the transfer matrix method[J]. Applied Acoustics, 2010, 71(1): 39-44. [33] DOZIO L, RICCIARDI M. Free vibration analysis of ribbed plates by a combined analytical-numerical method[J]. Journal of Sound and Vibration, 2009, 319(1-2): 681-697. [34] WU J R, LIU W H. Vibration of rectangular plates with edge restraints and intermediate stiffeners[J]. Journal of Sound and Vibration, 1988, 123(1): 103-113. [35] JIANG S J, SUN M Y, DONG T K, et al. Dynamic characteristics and responses of fused filament fabrication thin plates[J]. Journal of Northeastern University, 2020, 41(5): 673-678 (in Chinese). [36] LIN T R, ZHANG K. An analytical study of the free and forced vibration response of a ribbed plate with free boundary conditions[J]. Journal of Sound and Vibration, 2018, 422: 15-33. [37] ZHOU C W, LAINÉ J P, ICHCHOU M N, et al. Numerical and experimental investigation on broadband wave propagation features in perforated plates[J]. Mechanical Systems and Signal Processing, 2016, 75: 556-575. [38] MANCONI E, MACE B R. Wave characterization of cylindrical and curved panels using a finite element method[J]. The Journal of the Acoustical Society of America, 2009, 125(1): 154-163. [39] MACE B R, MANCONI E. Modelling wave propagation in two-dimensional structures using finite element analysis[J]. Journal of Sound and Vibration, 2008, 318(4-5): 884-902. [40] MACE B R, DUHAMEL D, BRENNAN M J, et al. Finite element prediction of wave motion in structural waveguides[J]. The Journal of the Acoustical Society of America, 2005, 117(5): 2835-2843. [41] WILCOX C H. Theory of bloch waves[J]. Journal d'Analyse Mathématique, 1978, 33(1): 146-167. [42] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55-61. [43] LI L, JIANG Z, FAN Y, et al. Coupled band gaps in the piezoelectric composite plate with interconnected electric impedance[C]//Proceedings of ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems.New York:ASME, 2018. [44] LI L, JIANG Z, FAN Y, et al. Creating thecoupled band gaps in piezoelectric composite plates by interconnected electric impedance[J]. Materials (Basel, Switzerland), 2018, 11(9): 1656. [45] MEAD D J. Wave propagation and natural modes in periodic systems: Ⅱ. Multi-coupled systems, with and without damping[J]. Journal of Sound and Vibration, 1975, 40(1): 19-39. [46] BOBROVNITSKII Y I. On the energy flow in evanescent waves[J]. Journal of Sound and Vibration, 1992, 152(1): 175-176. [47] KURZE U J. Comments on 《On the energy flow in evanescent waves》[J]. Journal of Sound and Vibration, 1993, 161(2): 355-356. [48] FAN Y, COLLET M, ICHCHOU M, et al. A wave-based design of semi-active piezoelectric composites for broadband vibration control[J]. Smart Materials and Structures, 2016, 25(5): 055032. [49] PENG X R, XIONG C X, LI W B. Reciprocal criterion of structural compliance topology optimization[J]. Chinese Journal of Applied Mechanics, 2019, 36(2): 334-342, 505 (in Chinese). 彭细荣, 熊创贤, 李文斌. 结构柔顺度拓扑优化的倒变量准则[J]. 应用力学学报, 2019, 36(2): 334-342, 505. [50] PENG X R, SUI Y K. Adjoint method for stress sensitivity analysis of structural topology optimization[J]. Chinese Journal of Applied Mechanics, 2017, 34(5): 887-893, 1013 (in Chinese). 彭细荣, 隋允康. 结构拓扑优化应力敏度分析的伴随法[J]. 应用力学学报, 2017, 34(5): 887-893, 1013. |