[1] SIGMUND O, MAUTE K. Topology optimization approaches[J]. Structural and Multidisciplinary Optimization, 2013, 48(6): 1031-1055. [2] WANG M Y, WANG X M, GUO D M. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1-2): 227-246. [3] HUANG X D, XIE Y M. A further review of ESO type methods for topology optimization[J]. Structural and Multidisciplinary Optimization, 2010, 41(5): 671-683. [4] OLHOFF N, DU J B. Topological design for minimum dynamic compliance of structures under forced vibration. Topology optimization in structural and continuum mechanics[M]. Berlin: Springer, 2014:325-339. [5] OLHOFF N, DU J B. Generalized incremental frequency method for topological designof continuum structures for minimum dynamic compliance subject to forced vibration at a prescribed low or high value of the excitation frequency[J]. Structural and Multidisciplinary Optimization, 2016, 54(5): 1113-1141. [6] ZARGHAM S, WARD T A, RAMLI R, et al. Topology optimization: A review for structural designs under vibration problems[J]. Structural and Multidisciplinary Optimization, 2016, 53(6): 1157-1177. [7] YE H L, SHEN J X, SUI Y K. Dynamic tological optimal design of three-dimensional continuum structures with frequencies constraints[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1037-1045 (in Chinese). 叶红玲, 沈静娴, 隋允康. 频率约束的三维连续体结构动力拓扑优化设计[J]. 力学学报, 2012, 44(6): 1037-1045. [8] LI Z H, SHI T L, XIA Q. Eliminate localized eigenmodes in level set based topology optimization for the maximization of the first eigenfrequency of vibration[J]. Advances in Engineering Software, 2017, 107: 59-70. [9] XU B, HAN Y S, ZHAO L, et al. Topology optimization of continuum structures for natural frequencies considering casting constraints[J]. Engineering Optimization, 2019, 51(6): 941-960. [10] YAN K, CHENG G D, WANG B P. Topology optimization of damping layers in shell structures subject to impact loads for minimum residual vibration[J]. Journal of Sound and Vibration, 2018, 431: 226-247. [11] DAHL J, JENSEN J S, SIGMUND O. Topology optimization for transient wave propagation problems in one dimension[J]. Structural and Multidisciplinary Optimization, 2008, 36(6): 585-595. [12] SILVA O M, NEVES M M, LENZI A. A critical analysis of using the dynamic compliance as objective function in topology optimization of one-material structures considering steady-state forced vibration problems[J]. Journal of Sound and Vibration, 2019, 444: 1-20. [13] RONG J H, TANG Z L, XIE Y M, et al. Topological optimization design of structures under random excitations using SQP method[J]. Engineering Structures, 2013, 56: 2098-2106. [14] ZHU J H, HE F, LIU T, et al. Structural topology optimization under harmonic base acceleration excitations[J]. Structural and Multidisciplinary Optimization, 2018, 57(3): 1061-1078. [15] ZHENG L, TANG Z C, HAN Z M, et al. Optimal design of damping material topology configuration to suppress interior noise in vehicle[J]. Journal of Vibration and Shock, 2015, 34(9): 42-47 (in Chinese). 郑玲, 唐重才, 韩志明, 等. 车身结构阻尼材料减振降噪优化设计[J]. 振动与冲击, 2015, 34(9): 42-47. [16] ZHANG X P, KANG Z. Dynamic topology optimization of piezoelectric structures with active control for reducing transient response[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 281: 200-219. [17] YUN K S, YOUN S K. Topology optimization of viscoelastic damping layers for attenuating transient response of shell structures[J]. Finite Elements in Analysis and Design, 2018, 141: 154-165. [18] VICENTE W M, PICELLI R, PAVANELLO R, et al. Topology optimization of frequency responses of fluid-structure interaction systems[J]. Finite Elements in Analysis and Design, 2015, 98: 1-13. [19] ZHANG X P, KANG Z. Topology optimization of piezoelectric layers in plates with active vibration control[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(6): 697-712. [20] LUO Y J, BAO J W. A material-field series-expansion method for topology optimization of continuum structures[J]. Computers & Structures, 2019, 225: 106122. [21] LUO Y J, XING J, KANG Z. Topology optimization using material-field series expansion and Kriging-based algorithm: An effective non-gradient method[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112966. [22] MOBLEY R K. Vibration fundamentals[M]. Amsterdam: Elsevier, 1999. [23] GAO T, ZHANG W H. A mass constraint formulation for structural topology optimization with multiphase materials[J]. International Journal for Numerical Methodsin Engineering, 2011, 88(8): 774-796. [24] GUEST J K. Topology optimization with multiple phase projection[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 199(1-4): 123-135. [25] WANG R, ZHANG X P, KANG Z. Topology optimization of damping layer in structures for minimizing dynamic compliance[J]. Journal of Vibration and Shock, 2013, 32(22): 36-40 (in Chinese). 王睿, 张晓鹏, 亢战. 以动柔度为目标的结构阻尼材料层拓扑优化[J]. 振动与冲击, 2013, 32(22): 36-40. [26] ZHANG X P, XING J, LIU P, et al. Realization of full and directional band gap design by non-gradient topology optimization in acoustic metamaterials[J]. Extreme Mechanics Letters, 2021, 42: 101126. [27] ZHANG X P, LUO Y J, YAN Y, et al. Photonic band gap material topological design at specified target frequency (adv. theory simul. 10/2021)[J]. Advanced Theory and Simulations, 2021, 4(10): 2170022. [28] LIU H, ZHANG W H, GAO T. A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations[J]. Structural and Multidisciplinary Optimization, 2015, 51(6): 1321-1333. [29] ZHANG W H, LIU H, GAO T. Topology optimization of large-scale structures subjected to stationary random excitation:An efficient optimization procedure integrating pseudo excitation method and mode acceleration method[J]. Computers & Structures, 2015, 158: 61-70. |