[1] LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing-Revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525387 (in Chinese). 李涤尘, 鲁中良, 田小永, 等. 增材制造: 面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4): 525387. [2] HERZOG D, SEYDA V, WYCISK E, et al. Additive manufacturing of metals[J]. Acta Materialia, 2016, 117: 371-392. [3] LU B H, LI D C, TIAN X Y. Development trends in additive manufacturing and 3D printing[J]. Engineering, 2015, 1(1): 85-89. [4] GU D D, MA C L, XIA M J, et al. A multiscale understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing[J]. Engineering, 2017, 3(5): 675-684. [5] KING W E, ANDERSON A T, FERENCZ R M, et al. Laser powder bed fusion additive manufacturing of metals: Physics, computational, and materials challenges[J]. Applied Physics Reviews, 2015, 2(4): 041304. [6] TAPIA G, ELWANY A. A review on process monitoring and control in metal-based additive manufacturing[J]. Journal of Manufacturing Science and Engineering, 2014, 136(6): 060801. [7] CRAEGHS T, BECHMANN F, BERUMEN S, et al. Feedback control of layerwise laser melting using optical sensors[J]. Physics Procedia, 2010, 5: 505-514. [8] ZUR JACOBSMVHLEN J, KLESZCZYNSKI S, SCHNEIDER D, et al. High resolution imaging for inspection of laser beam melting systems[C]//2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Piscataway: IEEE Press, 2013: 707-712. [9] GRASSO M, COLOSIMO B M. A statistical learning method for image-based monitoring of the plume signature in laser powder bed fusion[J]. Robotics and Computer-Integrated Manufacturing, 2019, 57: 103-115. [10] GRASSO M, DEMIR A G, PREVITALI B, et al. In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49: 229-239. [11] ANUSUYA M A, KATTI S K. Speech recognition by machine: A review[DB/OL]. arXiv preprint: 1001.2267, 2010. [12] CAGGIANO A, ZHANG J J, ALFIERI V, et al. Machine learning-based image processing for on-line defect recognition in additive manufacturing[J]. CIRP Annals, 2019, 68(1): 451-454. [13] GOBERT C, REUTZEL E W, PETRICH J, et al. Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging[J]. Additive Manufacturing, 2018, 21: 517-528. [14] SCIME L, BEUTH J. Using machine learning to identify in situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, 2019, 25: 151-165. [15] WANG C, TAN X P, TOR S B, et al. Machine learning in additive manufacturing: State-of-the-art and perspectives[J]. Additive Manufacturing, 2020, 36: 101538. [16] CAO L C, ZHOU Q, HAN Y F, et al. Review on intelligent monitoring of defects and process control of selective laser melting additive manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524790 (in Chinese). 曹龙超, 周奇, 韩远飞, 等. 激光选区熔化增材制造缺陷智能监测与过程控制综述[J]. 航空学报, 2021, 42(10): 524790. [17] CLIJSTERS S, CRAEGHS T, BULS S, et al. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(5-8): 1089-1101. [18] MONTAZERI M, YAVARI R, RAO P, et al. In-process monitoring of material cross-contamination defects in laser powder bed fusion[J]. Journal of Manufacturing Science and Engineering, 2018, 140(11): 111001. [19] COECK S, BISHT M, PLAS J, et al. Prediction of lack of fusion porosity in selective laser melting based on melt pool monitoring data[J]. Additive Manufacturing, 2019, 25: 347-356. [20] FERRI F, PUDIL P, HATEF M, et al. Comparative study of techniques for large-scale feature selection[J]. Machine Intelligence and Pattern, 1994, 16: 403-413. [21] DASH M, LIU H. Feature selection for classification[J]. Intelligent Data Analysis, 1997, 1(1-4): 131-156. [22] LI J D, CHENG K W, WANG S H, et al. Feature selection[J]. ACM Computing Surveys, 2018, 50(6): 1-45. [23] PENG H C, LONG F H, DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238. [24] DARBELLAY G A, VAJDA I. Estimation of the information by an adaptive partitioning of the observation space[J]. IEEE Transactions on Information Theory, 1999, 45(4): 1315-1321. [25] GUOLIN K, QI M, THOMAS F, et al. Lightgbm: A highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing Systems, 2017, 30: 3146-3154. [26] CHANG C C, LIN C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27. [27] KOBY C, YORAM S. On the algorithmic implementation of multiclass kernel-based vector machines[J]. Journal of Machine Learning Research, 2001, 2: 265-292. [28] BOTTOU L. Stochastic gradient descent tricks[M]//Lecture Notes in Computer Science. Berlin: Springer, 2012: 421-436. [29] SEBASTIAN R. An overview of gradient descent optimization algorithms[DB/OL]. arXiv preprint: 1609.04747, 2016. [30] NITESH V C, NATHAILE J, ALEKSANDAR K. Special issue on learning from imbalanced data sets[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 1-6. [31] HAN H, JIANG X Q. Overcome support vector machine diagnosis overfitting[J]. Cancer Informatics, 2014, 13(S1): CIN. S13875. [32] POZZOLO A D, CAELEN O, JOHNSON R A, et al. Calibrating probability with undersampling for unbalanced classification[C]//2015 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE Press, 2015: 159-166. [33] TYAGI S, MITTAL S. Sampling approaches for imbalanced data classification problem in machine learning[M]//Lecture Notes in Electrical Engineering. Cham: Springer International Publishing, 2019: 209-221. [34] EITRICH T, LANG B. Efficient optimization of support vector machine learning parameters for unbalanced datasets[J]. Journal of Computational and Applied Mathematics, 2006, 196(2): 425-436. |